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Abstract—This paper introduces a family of leaderless Byzan-
tine fault tolerance protocols, built around a metastable mecha-
nism via network subsampling. These protocols provide a strong
probabilistic safety guarantee in the presence of Byzantine adver-
saries while their concurrent and leaderless nature enables them
to achieve high throughput and scalability. Unlike blockchains
that rely on proof-of-work, they are quiescent and green. Unlike
traditional consensus protocols where one or more nodes typically
process linear bits in the number of total nodes per decision, no
node processes more than logarithmic bits. It does not require
accurate knowledge of all participants and exposes new possible
tradeoffs and improvements in safety and liveness for building
consensus protocols.

The paper describes the Snow protocol family, analyzes its
guarantees, and describes how it can be used to construct the core
of an internet-scale electronic payment system called Avalanche,
which is evaluated in a large scale deployment. Experiments
demonstrate that the system can achieve high throughput (3400
tps), provide low confirmation latency (1.35 sec), and scale well
compared to existing systems that deliver similar functionality.
For our implementation and setup, the bottleneck of the system
is in transaction verification.

I. INTRODUCTION

Achieving agreement among a set of distributed hosts lies at

the core of countless applications, ranging from Internet-scale

services that serve billions of people [12], [30] to cryptocurren-

cies worth billions of dollars [1]. To date, there have been two

main families of solutions to this problem. Traditional consen-

sus protocols rely on all-to-all communication to ensure that all

correct nodes reach the same decisions with absolute certainty.

Because they require quadratic communication overhead and

accurate knowledge of membership, they have been difficult

to scale to large numbers of participants. On the other hand,

Nakamoto consensus protocols [8], [24], [26], [35], [43]–[46],

[53]–[55] have become popular with the rise of Bitcoin. These

protocols provide a probabilistic safety guarantee: Nakamoto

consensus decisions may revert with some probability ε. A

protocol parameter allows this probability to be rendered

arbitrarily small, enabling high-value financial systems to be

constructed on this foundation. This family is a natural fit for

open, permissionless settings where any node can join the sys-

tem at any time. Yet, these protocols are costly, wasteful, and

limited in performance. By construction, they cannot quiesce:

their security relies on constant participation by miners, even

when there are no decisions to be made. Bitcoin currently
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consumes around 63.49 TWh/year [20], about twice as all

of Denmark [14]. Moreover, these protocols suffer from an

inherent scalability bottleneck that is difficult to overcome

through simple reparameterization [17].

This paper introduces a new family of consensus protocols

called Snow. Inspired by gossip algorithms, this family gains

its properties through a deliberately metastable mechanism.

Specifically, the system operates by repeatedly sampling the

network at random, and steering correct nodes towards a com-

mon outcome. Analysis shows that this metastable mechanism

is powerful: it can move a large network to an irreversible

state quickly, where the irreversibility implies that a sufficiently

large portion of the network has accepted a proposal and a

conflicting proposal will not be accepted with any higher than

negligible (ε) probability.

Similar to Nakamoto consensus, the Snow protocol family

provides a probabilistic safety guarantee, using a tunable

security parameter that can render the possibility of a consen-

sus failure arbitrarily small. Unlike Nakamoto consensus, the

protocols are green, quiescent and efficient; they do not rely on

proof-of-work [23] and do not consume energy when there are

no decisions to be made. The efficiency of the protocols stems

partly from removing the leader bottleneck: each node requires

O(1) communication overhead per round and O(log n) rounds

in expectation, whereas classical consensus protocols have one

or more nodes that require O(n) communication per round

(phase). Further, the Snow family tolerates discrepancies in

knowledge of membership, as we discuss later. In contrast,

classical consensus protocols require the full and accurate

knowledge of n as its safety foundation.

Snow’s subsampled voting mechanism has two additional

properties that improve on previous approaches for consensus.

Whereas the safety of quorum-based approaches breaks down

immediately when the predetermined threshold f is exceeded,

Snow’s probabilistic safety guarantee degrades smoothly when

Byzantine participants exceed f . This makes it easier to

pick the critical threshold f . It also exposes new tradeoffs

between safety and liveness: the Snow family is more efficient

when the fraction of Byzantine nodes is small, and it can be

parameterized to tolerate more than a third of the Byzantine

nodes by trading off liveness.

To demonstrate the potential of this protocol family, we

illustrate a practical peer-to-peer payment system, Avalanche.

In effect, Avalanche executes multiple Snowball instances with

the aid of a Directed Acyclic Graph (DAG). The DAG serves to

piggyback multiple instances, reducing the cost from O(log n)
to O(1) per node and streamlining the path where there are

ar
X

iv
:1

90
6.

08
93

6v
1 

 [
cs

.D
C

] 
 2

1 
Ju

n 
20

19



no conflicting transactions.

Overall, the main contribution of this paper is to introduce

a brand new family of consensus protocols, based on ran-

domized sampling and metastable decision. The next section

provides the model, goals and necessary assumptions for the

new protocols. Section III gives intuition behind the proto-

cols, followed by their full specification, Section IV provides

methodology used by our formal analysis of safety and liveness

in Appendix A, Section V describes Avalanche, a Bitcoin-like

payment system, Section VI evaluates Avalanche, Section VII

presents related work, and finally, Section VIII summarizes

our contributions.

II. MODEL AND GOALS

a) Key Guarantees

Safety: Unlike classical consensus protocols, and similar

to longest-chain-based consensus protocols such as Nakamoto

consensus [43], we adopt an ε-safety guarantee that is proba-

bilistic. In practice, this probabilistic guarantee is as strong as

traditional safety guarantees, since appropriately small choices

of ε can render consensus failure negligible, lower than the

probability of hardware failure due to random events.
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Fig. 1: The relation between f/n and the probability of system

safety failure (decision of two conflicting proposals), given

a choice of finality. Classical BFT protocols that tolerate f
failures will encounter total safety failure when the threshold

is exceeded even by one additional node. The Bitcoin curve

shows a typical finality choice for Bitcoin where a block

is considered final when it is “buried” in a branch having

6 additional blocks compared to any other competing forks.

Snowflake belongs to the Snow family, and it is configured

with k = 10, β = 150. Snowflake-7,8 uses α = 7 and α = 8
respectively.

Liveness: All our protocols provide a non-zero probability

guarantee of termination within a bounded amount of time.

This bounded guarantee is similar to various protocols such

as Ben-Or [7] and longest-chain protocols. In particular, for

Nakamoto consensus, the number of required blocks for a

transaction increases exponentially with the number of ad-

versarial nodes, with an asymptote at f = n/2 wherein

the number is infinite. In other words, the time required

for finality approaches ∞ as f approaches n/2 (Figure 3).

Furthermore, the required number of rounds is calculable

ahead of time, as to allow the system designer to tune liveness
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Fig. 2: Figure 1 with log-scaled y-axis.

at the expense of safety. Lastly, unlike traditional consensus

protocols and similar to Nakamoto, our protocols benefit from

lower adversarial presence, as discussed in property P3 below.
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Fig. 3: The relation between f/n and the convergence speed,

given ε = 10−20. The left figure shows the expected number of

blocks to guarantee ε in Bitcoin, which, counter to commonly

accepted folk wisdom, is not a constant 6, but depends on

adversary size to withhold the same ε. The right figure shows

the maximum number of rounds required by Snowflake, where

being different from Bitcoin, the asymptote is below 0.5 and

varies by the choice of parameters.

Formal Guarantees: Let the system be parameterized for

an ε safety failure probability under a maximum expected f
number of adversarial nodes. Let O(log n) < tmax < ∞ be

the upper bound of the execution of the protocols. The Snow

protocols then provide the following guarantees:

P1. Safety. When decisions are made by any two correct

nodes, they decide on conflicting transactions with negligible

probability (≤ ε).
P2. Liveness (Upper Bound). Snow protocols terminate with

a strictly positive probability within tmax rounds.

P3. Liveness (Lower Bound). If f ≤ O(
√
n), then the Snow

protocols terminate with high probability (≥ 1−ε) in O(log n)
rounds.

b) Network

In the standard definition of asynchrony [7], message trans-

mission is finite, but the distribution is undefined. This implies

that the scheduling of message transmission itself could behave

arbitrarily, and potentially even maliciously. We use a modified

version of this model, which is well-accepted [6], [22], [25],

[33], [39] in the analysis of epidemic networks and gossip-



based stochastic systems. In particular, we fix the distribution

of message delay to that of the exponential distribution. We

note that, just like in the standard asynchronous model, there

is a strictly non-zero probability that any correct node may

execute its next local round only after an arbitrarily large

amount of time has passed. Furthermore, we also note that

scheduling only applies to correct nodes, and the adversary

may execute arbitrarily, as discussed later.

c) Achieving Liveness

Classical consensus that works with asynchrony does not

get stuck in a single phase of voting because the vote initiator

always polls votes from all known participants and wait for

n − f responses. In our system, however, nodes operate via

subsampling, hence it is possible for a single sample to select a

majority of adversarial nodes, and therefore the node gets stuck

waiting for the responses. To ensure liveness, a node should be

able to wait with some timeout. Therefore, our protocols are

synchronous in order to guarantee liveness. Lastly, it is worth

noting that Nakamoto consensus is synchronous, in which

the required difficulty of proof-of-work is dependent on the

maximum network delay [44].

d) Adversary

The adversarial nodes execute under their own internal

scheduler, which is unbounded in speed, meaning that all

adversarial nodes can execute at any infinitesimally small

point in time, unlike correct nodes. The adversary can view

the state of every honest node at all times and can instantly

modify the state of all adversarial nodes. It cannot, however,

schedule or modify communication between correct nodes.

Finally, we make zero assumptions about the behavior of the

adversary, meaning that it can choose any execution strategy of

its liking. In short, the adversary is computationally bounded

(it cannot forge digital signatures) but otherwise is point-to-

point informationally unbounded (knows all state) and round-

adaptive (can modify its strategy at any time).

e) Sybil Attacks

Consensus protocols provide their guarantees based on as-

sumptions that only a fraction of participants are adversarial.

These bounds could be violated if the network is naively left

open to arbitrary participants. In particular, a Sybil attack [21],

wherein a large number of identities are generated by an

adversary, could be used to exceed the adversarial bound.

A long line of work, including PBFT [13], treats the

Sybil problem separately from consensus, and rightfully so,

as Sybil control mechanisms are distinct from the underlying,

more complex agreement protocol1. Nakamoto consensus, for

instance, uses proof-of-work [4] to limit Sybils, which requires

miners to continuously stake a hardware investment. Other

protocols, discussed in Section VII, rely on proof-of-stake or

proof-of-authority. The consensus protocols presented in this

paper can adopt any Sybil control mechanism, although proof-

of-stake is most aligned with their quiescent operation. One

1

This is not to imply that every consensus protocol can be coupled/decoupled
with every Sybil control mechanism.

can use an already established proof-of-stake based mecha-

nism [27]. The full design of a peer-to-peer payment system

incorporating staking, unstaking and minting mechanism is

beyond the scope of this paper, whose focus is on the core

consensus protocol.

f) Flooding Attacks

Flooding/spam attacks are a problem for any distributed

system. Without a protection mechanism, an attacker can

generate large numbers of transactions and flood protocol

data structures, consuming storage. There are a multitude of

techniques to deter such attacks, including network-layer pro-

tection, proof-of-authority, local proof-of-work and economic

mechanisms. In Avalanche, we use transaction fees, making

such attacks costly even if the attacker is sending money back

to addresses under its control.

g) Additional Assumptions

We do not assume that all members of the network are

known to all participants, but rather may temporarily have

some discrepancies in network view. We quantify the bounds

on the discrepancy in Appendix A-F. We assume a safe boot-

strapping mechanism, similar to that of Bitcoin, that enables a

node to connect with sufficiently many correct nodes to acquire

a statistically unbiased view of the network. We do not assume

a PKI. Finally, we make standard cryptographic assumptions

related to digital signatures and hash functions.

III. PROTOCOL DESIGN

We start with a non-BFT protocol called Slush and pro-

gressively build up to Snowflake and Snowball, all based on

the same common majority-based metastable voting mecha-

nism. These protocols are single-decree consensus protocols

of increasing robustness. We provide full specifications for the

protocols in this section, and defer the analysis to the next

section, and present formal proofs in the appendix.

A. Slush: Introducing Metastability

The core of our approach is a single-decree consensus

protocol, inspired by epidemic or gossip protocols. The sim-

plest protocol, Slush, is the foundation of this family, shown

in Figure 4. Slush is not tolerant to Byzantine faults, only

crash-faults (CFT), but serves as an illustration for the BFT

protocols that follow. For ease of exposition, we will describe

the operation of Slush using a decision between two conflicting

colors, red and blue.

In Slush, a node starts out initially in an uncolored state.

Upon receiving a transaction from a client, an uncolored node

updates its own color to the one carried in the transaction

and initiates a query. To perform a query, a node picks a

small, constant sized (k) sample of the network uniformly at

random, and sends a query message. Upon receiving a query,

an uncolored node adopts the color in the query, responds with

that color, and initiates its own query, whereas a colored node

simply responds with its current color. Once the querying node

collects k responses, it checks if a fraction ≥ α are for the

same color, where α > ⌊k/2⌋ is a protocol parameter. If the α
threshold is met and the sampled color differs from the node’s



1: procedure ONQUERY(v, col ′)
2: if col = ⊥ then col := col ′

3: RESPOND(v, col )

4: procedure SLUSHLOOP(u, col0 ∈ {R, B,⊥})
5: col := col0 // initialize with a color
6: for r ∈ {1 . . .m} do
7: // if ⊥, skip until ONQUERY sets the color
8: if col = ⊥ then continue

9: // randomly sample from the known nodes
10: K := SAMPLE(N\u, k)
11: P := [QUERY(v, col) for v ∈ K]
12: for col ′ ∈ {R, B} do
13: if P.COUNT(col ′) ≥ α then
14: col := col ′

15: ACCEPT(col )

Fig. 4: Slush protocol. Timeouts elided for readability.

own color, the node flips to that color. It then goes back to

the query step, and initiates a subsequent round of query, for a

total of m rounds. Finally, the node decides the color it ended

up with at time m.

Slush has a few properties of interest. First, it is almost

memoryless: a node retains no state between rounds other

than its current color, and in particular maintains no history

of interactions with other peers. Second, unlike traditional

consensus protocols that query every participant, every round

involves sampling just a small, constant-sized slice of the

network at random. Third, Slush makes progress under any

network configuration (even fully bivalent state, i.e. 50/50 split

between colors), since random perturbations in sampling will

cause one color to gain a slight edge and repeated samplings

afterwards will build upon and amplify that imbalance. Finally,

if m is chosen high enough, Slush ensures that all nodes will

be colored identically with high probability (whp). Each node

has a constant, predictable communication overhead per round,

and m grows logarithmically with n.

The Slush protocol does not provide a strong safety guar-

antee in the presence of Byzantine nodes. In particular, if the

correct nodes develop a preference for one color, a Byzantine

adversary can attempt to flip nodes to the opposite so as to keep

the network in balance, preventing a decision. We address this

in our first BFT protocol that introduces more state storage at

the nodes.

B. Snowflake: BFT

Snowflake augments Slush with a single counter that cap-

tures the strength of a node’s conviction in its current color.

This per-node counter stores how many consecutive samples

of the network by that node have all yielded the same color.

A node accepts the current color when its counter exceeds

β, another security parameter. Figure 5 shows the amended

protocol, which includes the following modifications:

1) Each node maintains a counter cnt ;

2) Upon every color change, the node resets cnt to 0;

3) Upon every successful query that yields ≥ α responses for

the same color as the node, the node increments cnt .

When the protocol is correctly parameterized for a given

threshold of Byzantine nodes and a desired ε-guarantee, it can

ensure both safety (P1) and liveness (P2, P3). As we later

1: procedure SNOWFLAKELOOP(u, col0 ∈ {R, B,⊥})
2: col := col0, cnt := 0
3: while undecided do
4: if col = ⊥ then continue

5: K := SAMPLE(N\u, k)
6: P := [QUERY(v, col) for v ∈ K]
7: maj := false
8: for col ′ ∈ {R, B} do
9: if P.COUNT(col ′) ≥ α then

10: maj := true
11: if col ′ 6= col then
12: col := col ′, cnt := 1
13: else
14: if ++cnt > β then ACCEPT(col )

15: if maj = false then cnt := 0

Fig. 5: Snowflake.

1: procedure SNOWBALLLOOP(u, col0 ∈ {R, B,⊥})
2: col := col0, lastcol := col0, cnt := 0
3: d[R] := 0, d[B] := 0
4: while undecided do
5: if col = ⊥ then continue
6: K := SAMPLE(N\u, k)
7: P := [QUERY(v, col) for v ∈ K]
8: maj := false
9: for col ′ ∈ {R, B} do

10: if P.COUNT(col ′) ≥ α then
11: maj := true
12: d[col ′]++
13: if d[col ′] > d[col ] then
14: col := col ′

15: if col ′ 6= lastcol then
16: lastcol := col ′, cnt := 1
17: else
18: if ++cnt > β then ACCEPT(col )

19: if maj = false then cnt := 0

Fig. 6: Snowball.

show, there exists an irreversible state after which a decision is

inevitable. Correct nodes begin to commit past the irreversible

state to adopt the same color, whp. For additional intuition,

which we do not expand in this paper, there also exists a phase-

shift point, where the Byzantine nodes lose ability to keep

network in a bivalent state.

C. Snowball: Adding Confidence

Snowflake’s notion of state is ephemeral: the counter gets

reset with every color flip. Snowball augments Snowflake with

confidence counters that capture the number of queries that

have yielded a threshold result for their corresponding color

(Figure 6). A node decides if it gets β consecutive chits for a

color. However, it only changes preference based on the total

accrued confidence. The differences between Snowflake and

Snowball are as follows:

1) Upon every successful query, the node increments its

confidence counter for that color.

2) A node switches colors when the confidence in its current

color becomes lower than the confidence value of the new

color.

IV. ANALYSIS

Due to space limits, we move some core details to Ap-

pendix A, where we show that under certain independent and



distinct assumptions, the Snow family of consensus protocols

provide safety (P1) and liveness (P2, P3) properties. In this

section, we summarize our core results and provide some proof

sketches.

a) Notation

Let the network consist of a set of n nodes (represented by

set N ), where c are correct nodes (represented by set C) and f
are Byzantine nodes (represented by set B). Let u, v ∈ C refer

to any two correct nodes in the network. Let k, α, β ∈ Z
+

be positive integers where α > ⌊k/2⌋. From now on, k will

always refer to the network sample size, where k ≤ n, and α
will be the majority threshold required to consider the voting

experiment a “success”. In general, we will refer to S as the

state (or configuration) of the network at any given time.

b) Modelling Framework

To formally model our protocols, we use continuous-time

Markov processes (CTMC). The state space is enumerable (and

finite), and state transitions occur in continuous time. CTMCs

naturally model our protocols since state transitions do not

occur in epochs and in lockstep for every node (at the end of

every time unit) but rather occur at any time and independently

of each other.

We focus on binary consensus, although the safety results

generalize to more than two values. We can think of the

network as a set of nodes either colored red or blue, and we

will refer to this configuration at time t as St. We model

our protocols through a continuous-time process with two

absorbing states, where either all nodes are red or all nodes

are blue. The state space S of the stochastic process is a

condensed version of the full configuration space, where each

state {0, . . . , n} represents the total number of blue nodes in

the system.

The simplification that allows us to analyze this system is

to obviate the need to keep track of all of the execution paths,

as well as all possible adversarial strategies, and rather focus

entirely on a single state of interest, without regards to how

we achieve this state. More specifically, the core extractable

insight of our analysis is in identifying the irreversibility state

of the system, the state upon which so many correct nodes have

usurped either red or blue that reverting back to the minority

color is highly unlikely.

A. Safety

a) Slush

Unless explicitly stated, we assume that L(u) = N for

all u ∈ N . We model the dynamics of the system through

a continuous-time process where two states are absorbing,

namely the all-red or all-blue state2. Let {Xt≥0} be the random

variable that describes the state of the system at time t, where

X0 = {0, . . . , c}. We begin by immediately discussing the

most important result of the safety dynamics of our processes:

2

Note that, in reality, we do not require that all nodes be the same color in
order to ensure that we decide on that color, only n− α− 1. This is only a
simplification in our description.

the reversibility probabilities of the Slush process. All the other

formal results in this paper are, informally speaking, intuitive

derivations and augmentations of this result.

Theorem 1. Let the configuration of the system at time t be

St = n/2+δ, meaning that the network has drifted to 2δ more

blue nodes than red nodes (δ = 0 means that red and blue are

equal). Let ξδ be the probability of absorption to the all-red

state (minority). Then, for all 0 ≤ δ ≤ n/2, we have

ξδ ≤
(

1/2− δ/n
α/k

)α(
1/2 + δ/n

1− α/k

)k−α

≤ e−2((α/k)−(1/2)+(δ/n))2k

(1)

Proof. This bound follows from the Hoeffding-derived tail

bounds of the hypergeometric distribution by Chvatal [15].

We note that Chvatal’s bounds are introduced for simplicity

of exposition and are extremely weak. We leave the full closed-

form expression in Theorem 2 to the appendix, which is also

significantly stronger than the Chvatal bound. Nonetheless,

using the loose Chvatal bound, we make the key observation

that as the drift δ increases, given fixed α and k, the probability

of moving towards the minority value decreases exponentially

fast (in fact, even faster, since there is a quadratic term in

the inverse exponent). Additionally, the same result holds for

increasing α given a fixed k.

The outcomes of this theorem demonstrate a key property:

once the network loses full bivalency (i.e. δ > 0), it tends to

topple and converge rapidly towards the majority color, unable

to revert back to the minority with significant probability.

This is the fundamental property exploited by our protocols,

and what makes them secure despite only sampling a small,

constant-sized set of the network. The core result that follows

for the safety guarantees in Snowflake is in finding regions

(given specific parameter choices) where the reversibility holds

with no higher than ε probability even under adversarial

presence.

b) Snowflake

For Snowflake, we relax the assumption that all nodes are

correct and assume that some fraction of nodes are adver-

sarial. In Slush, once the network gains significant majority

support for one proposal (e.g., the color blue), it becomes

unlikely for a minority proposal (e.g., the color red) to ever

become decided in the future (irreversibility). Furthermore,

in Slush nodes simply have to execute the protocol for a

deterministic number of rounds, m, which is known ahead

of protocol execution. When introducing adversarial nodes

with arbitrary strategies, however, nodes cannot simply execute

the protocol for a deterministic number of rounds, since

the adversary may nondeterministically affect the value of

m. Instead, correct nodes must implement a mechanism to

explicitly detect that irreversibility has been reached. To that

end, in Snowflake, every correct node implements a decision

function, D(u,St, blue)→ {0, 1}, which is a random variable

that outputs 1 if node u detects that the network has reached an

irreversibility state at time t for blue. The decision mechanism

is probabilistic, meaning that it can fail, although it is designed



to do so with negligible probability. We now sketch the proof

of Snowflake.

Proof Sketch. We define safety failure to be the event wherein

any two correct nodes u and v decide on blue and red, i.e.

D(u,St, blue) → 1 and D(v,St′ , red) → 1, for any two

times t and t′. We again model the system as a continuous

time random process. The state space is defined the same

way as in Slush. However, we note some critical subtleties.

First, unlike in Slush, where it is clear that, once nodes are

the same color, a decision has been made, this is no longer the

case for Snowflake. In fact, even if all correct nodes accept a

color, it is entirely possible for a correct node to switch again.

Second, we also have to consider the decision mechanism

D(∗). To analyze, we obviate the need to keep track of all

possible network configurations under all possible adversarial

strategies and assume that a node u first decides on blue. Then,

conditioned on the state of the network upon u deciding, we

calculate the probability that another node v decides red, which

is a function of both the probability that the network reverts

towards a minority blue state and that v decides at that precise

state. We show that under appropriate choices of k, α, and

β, we can construct highly secure instances of Snowflake (i.e.

safety failure with probability ≤ ε) when the network reaches

some bias of δ, as shown in Figure 7. A concrete example is

provided in Figure 1.

0 c/2 c

≤ ε

δ

Fig. 7: Representation of the irreversibility state, which exists

when – even under f Byzantine nodes – the number of blue

correct nodes exceeds that of red correct nodes by more than

2δ.

c) Snowball

Snowball is an improvement over Snowflake, where random

perturbations in network samples are reduced by introducing

a limited form of history, which we refer to as confidence.

The fundamental takeaway is that the history enables Snow-

ball to provide stronger security against safety failures than

Snowflake.

Proof Sketch. We structure the model via a game of balls

and urns, where each urn represents one of the correct nodes,

and the ball counts correspond to confidences in either color.

Using this model, the analysis applies martingale concentration

inequalities to prove that once the system has reached the

irreversibility state, then the growth of the confidence of the

majority decided color will perpetually grow and drift further

away from those of the minority color, effectively rendering

reversibility less likely over time. If the drifts ever revert, then

reversibility analysis becomes identical to that of Snowflake.

Since now the adversary must overcome the confidence drifts,

as well as the irreversibility dynamics, the security of Snowball

is strictly stronger than that of Snowflake.

B. Liveness

We assume that the observed adversarial presence 0 ≤ f ′ ≤
n(k − α − ψ)/k ≤ f , where we refer to ψ as the buffer

zone. The bigger ψ, the quicker the ability of the decision

mechanism to finalize a value. If, of course, ψ approaches

zero or becomes negative, then we violate the upper bound of

adversarial tolerance for the parameterized system, and thus

the adversary can, with high probability, stall termination by

simply choosing to not respond, although the safety guarantees

may still hold.

Assuming that ψ is strictly positive, termination is strictly

finite under all network configurations where a proposal has at

least α support. Furthermore, not only is termination finite with

probability one, we also have a strictly positive probability

of termination within any bounded amount of time tmax, as

discussed in Lemma 4, which follows from Theorem 3. This

captures liveness property P2.

Proof Sketch. Using the construction of the system to prove

irreversibility, we characterize the distribution of the average

time spent (sojourn times) at each state before the system

terminates execution by absorption at either absorbing state.

The termination time is then a union of these times.

For non-conflicting transactions, since the adversary is un-

able to forge a conflict, the time to decision is simply the

mixing time of the network starting from a configuration where

every correct node is uninitialized.

Proof Sketch. Mixing times for gossip is well characterized to

be as O(log n), and this result holds for all our protocols.

Liveness guarantees under a fully bivalent network config-

uration reduce to an optimal convergence time of O(log n)
rounds if the adversary is at most O(

√
n), for α = ⌊k/2⌋+1.

We leave additional detains to Lemma 5. When the adversary

surpasses O(
√
n) nodes, the worst-case number of rounds

increases polynomially, and as f approaches n/2 it approaches

exponential convergence rates.

Proof Sketch. We modify Theorem 3 to include the adversary,

which reverts any imbalances in the network by keeping

network fully bivalent.

a) Multi-Value Consensus

Our binary consensus protocol could support multi-value

consensus by running logarithmic binary instances, one for

each bit of the proposed value. However, such theoretical

reduction might not be efficient in practice. Instead, we could

directly incorporate multi-values as multi-colors in the proto-

col, where safety analysis could still be generalized.

As for liveness, we sketch a leaderless initialization mecha-

nism, which in expectation uses O(log n) rounds under the

assumption that the network is synchronized. Every node

operates in three phases: in the first phase, it gossips and

collects proposals for O(log n) rounds, where each round lasts

for the maximum message delay; in the second phase, each

node stops collecting proposals, and instead gossips all new

values for an additional O(log n) rounds; in the third phase,

each node samples the proposals it knows of locally, checking



for values that have an α majority, ordered deterministically,

such as by hash values. Finally, a node selects the first value by

the order as its initial state when it starts the subsequent con-

sensus protocol. In a cryptocurrency setting, the deterministic

ordering function would incorporate fees paid out for every

new proposal, which means that the adversary is financially

limited in its ability to launch a fairness attack against the

initialization. While the design of initialization mechanisms is

interesting, note that it is not necessary for a decentralized

payment system, as we show in Section V.

Finally, we discuss churn and view discrepancies in the

appendix.

V. PEER-TO-PEER PAYMENT SYSTEM

We have implemented a bare-bones payment system,

Avalanche, which supports Bitcoin transactions. In this section,

we describe the design and sketch how the implementation

can support the value transfer primitive at the center of cryp-

tocurrencies. Deploying a full cryptocurrency involves boot-

strapping, minting, staking, unstaking, and inflation control.

While we have solutions for these issues, their full discussion

is beyond the scope of this paper, whose focus is centered on

the novel Snow consensus protocol family.

In a cryptocurrency setting, cryptographic signatures enforce

that only a key owner is able to create a transaction that spends

a particular coin. Since correct clients follow the protocol

as prescribed and never double spend coins, in Avalanche,

they are guaranteed both safety and liveness for their virtuous

transactions. In contrast, liveness is not guaranteed for rogue

transactions, submitted by Byzantine clients, which conflict

with one another. Such decisions may stall in the network, but

have no safety impact on virtuous transactions. We show that

this is a sensible tradeoff, and that resulting system is sufficient

for building complex payment systems.

A. Avalanche: Adding a DAG

Avalanche consists of multiple single-decree Snowball in-

stances instantiated as a multi-decree protocol that maintains

a dynamic, append-only directed acyclic graph (DAG) of all

known transactions. The DAG has a single sink that is the

genesis vertex. Maintaining a DAG provides two significant

benefits. First, it improves efficiency, because a single vote

on a DAG vertex implicitly votes for all transactions on the

path to the genesis vertex. Second, it also improves security,

because the DAG intertwines the fate of transactions, similar

to the Bitcoin blockchain. This renders past decisions difficult

to undo without the approval of correct nodes.

When a client creates a transaction, it names one or more

parents, which are included inseparably in the transaction and

form the edges of the DAG. The parent-child relationships

encoded in the DAG may, but do not need to, correspond to

application-specific dependencies; for instance, a child trans-

action need not spend or have any relationship with the funds

received in the parent transaction. We use the term ancestor

set to refer to all transactions reachable via parent edges back

in history, and progeny to refer to all children transactions and

their offspring.

1: procedure INIT

2: T := ∅ // the set of known transactions
3: Q := ∅ // the set of queried transactions

4: procedure ONGENERATETX(data)
5: edges := {T ′ ← T : T ′ ∈ PARENTSELECTION(T )}
6: T := TX(data, edges)
7: ONRECEIVETX(T )

8: procedure ONRECEIVETX(T )
9: if T /∈ T then

10: if PT = ∅ then
11: PT := {T}, PT .pref := T
12: PT .last := T,PT .cnt := 0
13: else PT := PT ∪ {T}

14: T := T ∪ {T}, cT := 0.

Fig. 8: Avalanche: transaction generation.

The central challenge in the maintenance of the DAG is to

choose among conflicting transactions. The notion of conflict

is application-defined and transitive, forming an equivalence

relation. In our cryptocurrency application, transactions that

spend the same funds (double-spends) conflict, and form a

conflict set (shaded regions in Figure 11) , out of which only

a single one can be accepted. Note that the conflict set of a

virtuous transaction is always a singleton.

Avalanche embodies a Snowball instance for each conflict

set. Whereas Snowball uses repeated queries and multiple

counters to capture the amount of confidence built in con-

flicting transactions (colors), Avalanche takes advantage of the

DAG structure and uses a transaction’s progeny. Specifically,

when a transaction T is queried, all transactions reachable from

T by following the DAG edges are implicitly part of the query.

A node will only respond positively to the query if T and

its entire ancestry are currently the preferred option in their

respective conflict sets. If more than a threshold of responders

vote positively, the transaction is said to collect a chit. Nodes

then compute their confidence as the total number of chits in

the progeny of that transaction. They query a transaction just

once and rely on new vertices and possible chits, added to

the progeny, to build up their confidence. Ties are broken by

an initial preference for first-seen transactions. Note that chits

are decoupled from the DAG structure, making the protocol

immune to attacks where the attacker generates large, padded

subgraphs.

B. Avalanche: Specification

Each correct node u keeps track of all transactions it has

learned about in set Tu, partitioned into mutually exclusive

conflict sets PT , T ∈ Tu. Since conflicts are transitive, if Ti
and Tj are conflicting, then they belong to the same conflict

set, i.e. PTi
= PTj

. It’s worth noting this relation may sound

counter-intuitive: conflicting transitions have the equivalence

relation, because they are equivocations spending the same

funds.

We write T ′ ← T if T has a parent edge to transaction T ′,
The “

∗←”-relation is its reflexive transitive closure, indicating

a path from T to T ′. DAGs built by different nodes are

guaranteed to be compatible, though at any one time, the two

nodes may not have a complete view of all vertices in the

system. Specifically, if T ′ ← T , then every node in the system



1: procedure AVALANCHELOOP

2: while true do
3: find T that satisfies T ∈ T ∧ T /∈ Q
4: K := SAMPLE(N\u, k)
5: P :=

∑

v∈K
QUERY(v, T )

6: if P ≥ α then
7: cT := 1
8: // update the preference for ancestors

9: for T ′ ∈ T : T ′ ∗
← T do

10: if d(T ′) > d(PT ′ .pref ) then
11: PT ′ .pref := T ′

12: if T ′ 6= PT ′ .last then
13: PT ′ .last := T ′, PT ′ .cnt := 1
14: else
15: ++PT ′ .cnt

16: else
17: for T ′ ∈ T : T ′ ∗

← T do
18: PT ′ .cnt := 0

19: // otherwise, cT remains 0 forever
20: Q := Q∪ {T} // mark T as queried

Fig. 9: Avalanche: the main loop.

1: function ISPREFERRED(T )
2: return T = PT .pref

3: function ISSTRONGLYPREFERRED(T )

4: return ∀T ′ ∈ T , T ′ ∗
← T : ISPREFERRED(T ′)

5: function ISACCEPTED(T )
6: return

((∀T ′ ∈ T , T ′ ← T : ISACCEPTED(T ′))

∧ |PT | = 1 ∧ PT .cnt > β1) // safe early commitment

∨(PT .cnt > β2) // consecutive counter

7: procedure ONQUERY(j, T )
8: ONRECEIVETX(T )
9: RESPOND(j, ISSTRONGLYPREFERRED(T ))

Fig. 10: Avalanche: voting and decision primitives.

that has T will also have T ′ and the same relation T ′ ← T ;

and conversely, if T ′✟✟←T , then no nodes will end up with

T ′ ← T .

Each node u can compute a confidence value, du(T ), from

the progeny as follows:

du(T ) =
∑

T ′∈Tu,T
∗

←T ′

cuT ′

where cuT ′ stands for the chit value of T ′ for node u. Each

transaction initially has a chit value of 0 before the node gets

the query results. If the node collects a threshold of α yes-

votes after the query, the value cuT ′ is set to 1, otherwise

remains 0 forever. Therefore, a chit value reflects the result

from the one-time query of its associated transaction and

becomes immutable afterwards, while d(T ) can increase as the

DAG grows by collecting more chits in its progeny. Because

cT ∈ {0, 1}, confidence values are monotonic.

In addition, node u maintains its own local list of known

nodes Nu ⊆ N that comprise the system. For simplicity, we

assume for now Nu = N , and elide subscript u in contexts

without ambiguity.

Each node implements an event-driven state machine, cen-

tered around a query that serves both to solicit votes on each

transaction and to notify other nodes of the existence of newly

T1

T2 T3

T4 T5

T6

T7

T8 T9

PT1

PT2
= PT3

PT9
= PT6

= PT7

〈cT1
, d(T1)〉 = 〈1, 6〉

〈1, 5〉 〈0, 0〉

〈1, 2〉 〈1, 3〉

〈0, 0〉

〈0, 0〉

〈1, 1〉
〈1, 1〉

Fig. 11: Example of 〈chit, confidence〉 values. Darker boxes

indicate transactions with higher confidence values. At most

one transaction in each shaded region will be accepted.

discovered transactions. In particular, when node u discovers

a transaction T through a query, it starts a one-time query

process by sampling k random peers and sending a message

to them, after T is delivered via ONRECEIVETX.

Node u answers a query by checking whether each T ′

such that T ′
∗← T is currently preferred among competing

transactions ∀T ′′ ∈ PT ′ . If every single ancestor T ′ fulfills

this criterion, the transaction is said to be strongly preferred,

and receives a yes-vote (1). A failure of this criterion at any

T ′ yields a no-vote (0). When u accumulates k responses, it

checks whether there are α yes-votes for T , and if so grants

the chit (chit value cT := 1) for T . The above process will

yield a labeling of the DAG with a chit value and associated

confidence for each transaction T .

Figure 11 illustrates a sample DAG built by Avalanche.

Similar to Snowball, sampling in Avalanche will create a

positive feedback for the preference of a single transaction in

its conflict set. For example, because T2 has larger confidence

than T3, its descendants are more likely collect chits in the

future compared to T3.

Similar to Bitcoin, Avalanche leaves determining the accep-

tance point of a transaction to the application. An application

supplies an ISACCEPTED predicate that can take into account

the value at risk in the transaction and the chances of a decision

being reverted to determine when to decide.

Committing a transaction can be performed through a safe

early commitment. For virtuous transactions, T is accepted

when it is the only transaction in its conflict set and has a

confidence greater than threshold β1. As in Snowball, T can

also be accepted after a β2 number of consecutive successful

queries. If a virtuous transaction fails to get accepted due to

a problem with parents, it could be accepted if reissued with

different parents. Figure 8 shows how Avalanche performs par-

ent selection and entangles transactions. Because transactions

that consume and generate the same UTXO do not conflict

with each other, any transaction can be reissued with different

parents.

Figure 9 illustrates the protocol main loop executed by each

node. In each iteration, the node attempts to select a transaction

T that has not yet been queried. If no such transaction exists,

the loop will stall until a new transaction is added to T . It then

selects k peers and queries those peers. If more than α of those



peers return a positive response, the chit value is set to 1. After

that, it updates the preferred transaction of each conflict set of

the transactions in its ancestry. Next, T is added to the set Q
so it will never be queried again by the node. The code that

selects additional peers if some of the k peers are unresponsive

is omitted for simplicity.

Figure 10 shows what happens when a node receives a

query for transaction T from peer j. First it adds T to T ,

unless it already has it. Then it determines if T is currently

strongly preferred. If so, the node returns a positive response

to peer j. Otherwise, it returns a negative response. Notice

that in the pseudocode, we assume when a node knows T ,

it also recursively knows the entire ancestry of T . This can

be achieved by postponing the delivery of T until its entire

ancestry is recursively fetched. In practice, an additional gossip

process that disseminates transactions is used in parallel, but

is not shown in pseudocode for simplicity.

C. Multi-Input UTXO Transactions

In addition to the DAG structure in Avalanche, an unspent

transaction output (UTXO) [43] graph that captures spending

dependency is used to realize the ledger for the payment

system. To avoid ambiguity, we denote the transactions that

encode the data for money transfer transactions, while we call

the transactions (T ∈ T ) in Avalanche’s DAG vertices.

We inherit the transaction and address mechanisms from Bit-

coin. At their simplest, transactions consist of multiple inputs

and outputs, with corresponding redeem scripts. Addresses are

identified by the hash of their public keys, and signatures are

generated by corresponding private keys. The full scripting

language is used to ensure that a redeem script is authenticated

to spend a UTXO. UTXOs are fully consumed by a valid

transaction, and may generate new UTXOs spendable by

named recipients. Multi-input transactions consume multiple

UTXOs, and in Avalanche, may appear in multiple conflict

sets. To account for these correctly, we represent transaction-

input pairs (e.g. Ina1) as Avalanche vertices. The conflict

relation of transaction-input pairs is transitive because of

each pair only spends one unspent output. Then, we use the

conjunction of ISACCEPTED for all inputs of a transaction

to ensure that no transaction will be accepted unless all its

inputs are accepted (Figure 12). In other words, a transaction

is accepted only if all its transaction-input pairs are accepted

in their respective Snowball conflict sets. Following this idea,

we finally implement the DAG of transaction-input pairs such

that multiple transactions can be batched together per query.

a) Optimizations

We implement some optimizations to help the system scale.

First, we use lazy updates to the DAG, because the recursive

definition for confidence may otherwise require a costly DAG

traversal. We maintain the current d(T ) value for each active

vertex on the DAG, and update it only when a descendant

vertex gets a chit. Since the search path can be pruned at

accepted vertices, the cost for an update is constant if the

rejected vertices have limited number of descendants and the

undecided region of the DAG stays at constant size. Second,

TXg

TXa TXb

TXc

Ina1 Ina2 Inb1 Inb2

Inc1 Inc2

Fig. 12: The underlying logical DAG structure used by

Avalanche. The tiny squares with shades are dummy vertices

which just help form the DAG topology for the purpose of

clarity, and can be replaced by direct edges. The rounded gray

regions are the conflict sets.

the conflict set could be very large in practice, because a rogue

client can generate a large volume of conflicting transactions.

Instead of keeping a container data structure for each conflict

set, we create a mapping from each UTXO to the preferred

transaction that stands as the representative for the entire

conflict set. This enables a node to quickly determine future

conflicts, and the appropriate response to queries. Finally, we

speed up the query process by terminating early as soon as the

α threshold is met, without waiting for k responses.

b) DAG

Compared to Snowball, Avalanche introduces a DAG struc-

ture that entangles the fate of unrelated conflict sets, each of

which is a single-decree instance. This entanglement embodies

a tension: attaching a virtuous transaction to undecided parents

helps propel transactions towards a decision, while it puts

transactions at risk of suffering liveness failures when parents

turn out to be rogue. We can resolve this tension and provide

a liveness guarantee with the aid of two mechanisms.

First we adopt an adaptive parent selection strategy, where

transactions are attached at the live edge of the DAG, and

are retried with new parents closer to the genesis vertex. This

procedure is guaranteed to terminate with uncontested, decided

parents, ensuring that a transaction cannot suffer liveness

failure due to contested, rogue transactions. A secondary

mechanism ensures that virtuous transactions with decided

ancestry will receive sufficient chits. Correct nodes examine

the DAG for virtuous transactions that lack sufficient progeny

and emit no-op transactions to help increase their confidence.

With these two mechanisms in place, it is easy to see that,

at worst, Avalanche will degenerate into separate instances of

Snowball, and thus provide the same liveness guarantee for

virtuous transactions.

Unlike other cryptocurrencies [48] that use graph vertices

directly as votes, Avalanche only uses DAG for the purpose of

batching queries in the underlying Snowball instances. Because

confidence is built by collected chits, and not by just the

presence of a vertex, simply flooding the network with vertices

attached to the rejected side of a subgraph will not subvert the

protocol.



D. Communication Complexity

Let the DAG induced by Avalanche have an expected

branching factor of p, corresponding to the width of the DAG,

and determined by the parent selection algorithm. Given the β1
and β2 decision threshold, a transaction that has just reached

the point of decision will have an associated progeny Y .

Let m be the expected depth of Y . If we were to let the

Avalanche network make progress and then freeze the DAG at

a depth y, then it will have roughly py vertices/transactions,

of which p(y − m) are decided in expectation. Only pm
recent transactions would lack the progeny required for a

decision. For each node, each query requires k samples,

and therefore the total message cost per transaction is in

expectation (pky)/(p(y − m)) = ky/(y − m). Since m is

a constant determined by the undecided region of the DAG

as the system constantly makes progress, message complexity

per node is O(k), while the total complexity is O(kn).

VI. EVALUATION

A. Setup

We conduct our experiments on Amazon EC2 by running

from hundreds (125) to thousands (2000) of virtual machine

instances. We use c5.large instances, each of which simu-

lates an individual node. AWS provides bandwidth of up to 2

Gbps, though the Avalanche protocol utilizes at most around

100 Mbps.

Our implementation supports two versions of transactions:

one is the customized UTXO format, while the other uses the

code directly from Bitcoin 0.16. Both supported formats use

secp256k1 crypto library from bitcoin and provide the same

address format for wallets. All experiments use the customized

format except for the geo-replication, where results for both

are given.

We simulate a constant flow of new transactions from users

by creating separate client processes, each of which maintains

separated wallets, generates transactions with new recipient

addresses and sends the requests to Avalanche nodes. We use

several such client processes to max out the capacity of our

system. The number of recipients for each transaction is tuned

to achieve average transaction sizes of around 250 bytes (1–2

inputs/outputs per transaction on average and a stable UTXO

size), the current average transaction size of Bitcoin. To utilize

the network efficiently, we batch up to 40 transactions during a

query, but maintain confidence values at individual transaction

granularity.

All reported metrics reflect end-to-end measurements taken

from the perspective of all clients. That is, clients examine the

total number of confirmed transactions per second for through-

put, and, for each transaction, subtract the initiation timestamp

from the confirmation timestamp for latency. Each throughput

experiment is repeated for 5 times and standard deviation is

indicated in each figure. As for security parameters, we pick

k = 10, α = 0.8, β1 = 11, β2 = 150, which yields an MTTF

of ˜1024 years.

B. Throughput

We first measure the throughput of the system by saturating

it with transactions and examining the rate at which transac-

tions are confirmed in the steady state. For this experiment,

we first run Avalanche on 125 nodes with 10 client processes,

each of which maintains 400 outstanding transactions at any

given time.

As shown by the first group of bars in Figure 13, the system

achieves 6851 transactions per second (tps) for a batch size of

20 and above 7002 tps for a batch size of 40. Our system is

saturated by a small batch size comparing to other blockchains

with known performance: Bitcoin batches several thousands

of transactions per block, Algorand [27] uses 2–10 Mbyte

blocks, i.e., 8.4–41.9K tx/batch and Conflux [38] uses 4 Mbyte

blocks, i.e., 16.8K tx/batch. These systems are relatively slow

in making a single decision, and thus require a very large batch

(block) size for better performance. Achieving high throughput

with small batch size implies low latency, as we will show later.
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Fig. 13: Throughput vs. network size. Each pair of bars is

produced with batch size of 20 and 40, from left to right.

C. Scalability

To examine how the system scales in terms of the number

of nodes participating in Avalanche consensus, we run exper-

iments with identical settings and vary the number of nodes

from 125 up to 2000.

Figure 13 shows that overall throughput degrades about

1.34% to 6909 tps when the network grows by a factor of

16 to n = 2000. This degradation is minor compared to the

fluctuation in performance of repeated runs. Note that the x-
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Fig. 14: Throughput for batch size of 40, with (left) and

without (right) signature verification.



0.
01

0.
05 0.
1

0.
20
6

0.
42
6 1 2

0.00

0.01

0.02

0.03

0.
01

0.
05 0.
1

0.
20
6

0.
42
6 1 2

0.0

0.5

1.0hist. cdf.

Time (sec.)

Fig. 15: Transaction latency distribution for n = 2000. The

x-axis is the transaction latency in log-scaled seconds, while

the y-axis is the portion of transactions that fall into the con-

firmation time (normalized to 1). Histogram of all transaction

latencies for a client is shown on the left with 100 bins, while

its CDF is on the right.

axis is logarithmic.

Avalanche acquires its scalability from three sources: first,

maintaining a partial order that captures only the spending

relations allows for more concurrency than a classical BFT

replicated log that linearizes all transactions; second, the lack

of a leader naturally avoids bottlenecks; finally, the number of

messages each node has to handle per decision is O(k) and

does not grow as the network scales up.

D. Cryptography Bottleneck

We next examine where bottlenecks lie in our current

implementation. The purple bar on the right of each group

in Figure 14 shows the throughput of Avalanche with signa-

ture verification disabled. Throughputs get approximately 2.6x

higher, compared to the blue bar on the left. This reveals that

cryptographic verification overhead is the current bottleneck of

our system implementation. This bottleneck can be addressed

by offloading transaction verification to a GPU. Even without

such optimization, 7K tps is far in excess of extant blockchains.

E. Latency

The latency of a transaction is the time spent from the

moment of its submission until it is confirmed as accepted.

Figure 15 tallies the latency distribution histogram using the

same setup as for the throughput measurements with 2000

nodes. The x-axis is the time in seconds while the y-axis is

the portion of transactions that are finalized within the corre-

sponding time period. This figure also outlines the Cumulative

Distribution Function (CDF) by accumulating the number of

finalized transactions over time.

This experiment shows that most transactions are confirmed

within approximately 0.3 seconds. The most common latencies

are around 206 ms and variance is low, indicating that nodes

converge on the final value as a group around the same time.

The second vertical line shows the maximum latency we

observe, which is around 0.4 seconds.

Figure 16 shows transaction latencies for different numbers

of nodes. The horizontal edges of boxes represent minimum,

first quartile, median, third quartile and maximum latency

respectively, from bottom to top. Crucially, the experimental

data show that median latency is more-or-less independent of

network size.
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Fig. 16: Transaction latency vs. network size. “b” indicates

batch size and “raw” is the run without signature verification.

F. Misbehaving Clients

We next examine how rogue transactions issued by misbe-

having clients that double spend unspent outputs can affect

latency for virtuous transactions created by honest clients.

We adopt a strategy to simulate misbehaving clients where a

fraction (from 0% to 25%) of the pending transactions conflict

with some existing ones. The client processes achieve this by

designating some double spending transaction flows among

all simulated pending transactions and sending the conflicting

transactions to different nodes. We use the same setup with

n = 1000 as in the previous experiments, and only measure

throughput and latency of confirmed transactions.

Avalanche’s latency is only slightly affected by misbehaving

clients, as shown in Figure 17. Surprisingly, maximum laten-

cies drop slightly when the percentage of rogue transactions

increases. This behavior occurs because, with the introduction

of rogue transactions, the overall effective throughput is re-

duced and thus alleviates system load. This is confirmed by
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Fig. 19: Latency histogram/CDF for n = 2000 in 20 cities.

Figure 18, which shows that throughput (of virtuous transac-

tions) decreases with the ratio of rogue transactions. Further,

the reduction in throughput appears proportional to the number

of misbehaving clients, that is, there is no leverage provided

to the attackers.

G. Geo-replication

Next experiment shows the system in an emulated geo-

replicated scenario, patterned after the same scenario in prior

work [27]. We selected 20 major cities that appear to be

near substantial numbers of reachable Bitcoin nodes, according

to [9]. The cities cover North America, Europe, West Asia,

East Asia, Oceania, and also cover the top 10 countries with

the highest number of reachable nodes. We use the latency and

jittering matrix crawled from [58] and emulate network packet

latency in the Linux kernel using tc and netem. 2000 nodes

are distributed evenly to each city, with no additional network

latency emulated between nodes within the same city. Like

Algorand’s evaluation, we also cap our bandwidth per process

to 20 Mbps to simulate internet-scale settings where there are

many commodity network links. We assign a client process to

each city, maintaining 400 outstanding transactions per city at

any moment.

In this scenario, Avalanche achieves an average throughput

of 3401 tps, with a standard deviation of 39 tps. As shown in

Figure 19, the median transaction latency is 1.35 seconds, with

a maximum latency of 4.25 seconds. We also support native

Bitcoin code for transactions; in this case, the throughput is

3530 tps, with σ = 92 tps.

H. Comparison to Other Systems

Though there are seemingly abundant blockchain or cryp-

tocurrency protocols, most of them only present a sketch of

their protocols and do not offer practical implementation or

evaluation results. Moreover, among those who do provide re-

sults, most are not evaluated in realistic, large-scale (hundreds

to thousands of full nodes participating in consensus) settings.

Therefore, we choose Algorand and Conflux for our compar-

ison. Algorand, Conflux, and Avalanche are all fundamentally

different in their design. Algorand’s committee-scale consen-

sus algorithm falls into the classical BFT consensus category,

and Conflux extends Nakamoto consensus by a DAG structure

to facilitate higher throughput, while Avalanche belongs to a

new protocol family based on metastability. Additionally, we

use Bitcoin [43] as a baseline.

Both Algorand and Avalanche evaluations use a decision

network of size 2000 on EC2. Our evaluation picked shared

c5.large instances, while Algorand used m4.2xlarge. These

two platforms are very similar except for a slight CPU clock

speed edge for c5.large, which goes largely unused because

our process only consumes 30% in these experiments. The

security parameters chosen in our experiments guarantee a

safety violation probability below 10−9 in the presence of

20% Byzantine nodes, while Algorand’s evaluation guarantees

a violation probability below 5 × 10−9 with 20% Byzantine

nodes.

Neither Algorand nor Conflux evaluations take into account

the overhead of cryptographic verification. Their evaluations

use blocks that carry megabytes of dummy data and present

the throughput in MB/hour or GB/hour unit. So we use the

average size of a Bitcoin transaction, 250 bytes, to derive

their throughputs. In contrast, our experiments carry real

transactions and fully take all cryptographic overhead into

account.

The throughput is 3-7 tps for Bitcoin, 874 tps for Algorand

(with 10 Mbyte blocks), 3355 tps for Conflux (in the paper it

claims 3.84x Algorand’s throughput under the same settings).

In contrast, Avalanche achieves over 3400 tps consistently

on up to 2000 nodes without committee or proof-of-work. As

for latency, a transaction is confirmed after 10–60 minutes in

Bitcoin, around 50 seconds in Algorand, 7.6–13.8 minutes in

Conflux, and 1.35 seconds in Avalanche.

Avalanche performs much better than Algorand in both

throughput and latency because Algorand uses a verifiable

random function to elect committees, and maintains a totally-

ordered log while Avalanche establishes only a partial order.

Algorand is leader-based and performs consensus by commit-

tee, while Avalanche is leader-less.

Avalanche has similar throughput to Conflux, but its latency

is 337–613x better. Conflux also uses a DAG structure to

amortize the cost for consensus and increase the throughput,

however, it is still rooted in Nakamoto consensus (PoW),

making it unable to have instant confirmation compared to

Avalanche.

In a blockchain system, one can usually improve throughput

at the cost of latency through batching. The real bottleneck



of the performance is the number of decisions the system

can make per second, and this is fundamentally limited by

either Byzantine Agreement (BA∗) in Algorand and Nakamoto

consensus in Conflux.

VII. RELATED WORK

Bitcoin [43] is a cryptocurrency that uses a blockchain

based on proof-of-work (PoW) to maintain a ledger of UTXO

transactions. While techniques based on proof-of-work [4],

[23], and even cryptocurrencies with minting based on proof-

of-work [49], [57], have been explored before, Bitcoin was

the first to incorporate PoW into its consensus process. Unlike

more traditional BFT protocols, Bitcoin has a probabilistic

safety guarantee and assumes honest majority computational

power rather than a known membership, which in turn has

enabled an internet-scale permissionless protocol. While per-

missionless and resilient to adversaries, Bitcoin suffers from

low throughput (˜3 tps) and high latency (˜5.6 hours for

a network with 20% Byzantine presence and 2−32 security

guarantee). Furthermore, PoW requires a substantial amount

of computational power that is consumed only for the purpose

of maintaining safety.

Countless cryptocurrencies use PoW [4], [23] to maintain

a distributed ledger. Like Bitcoin, they suffer from inherent

scalability bottlenecks. Several proposals for protocols exist

that try to better utilize the effort made by PoW. Bitcoin-

NG [24] and the permissionless version of Thunderella [46]

use Nakamoto-like consensus to elect a leader that dictates

writing of the replicated log for a relatively long time so as

to provide higher throughput. Moreover, Thunderella provides

an optimistic bound that, with 3/4 honest computational power

and an honest elected leader, allows transactions to be con-

firmed rapidly. ByzCoin [35] periodically selects a small set

of participants and then runs a PBFT-like protocol within the

selected nodes.

Protocols based on Byzantine agreement [37], [47] typically

make use of quorums and require precise knowledge of mem-

bership. PBFT [13], a well-known representative, requires a

quadratic number of message exchanges in order to reach

agreement. The Q/U protocol [2] and HQ replication [16] use a

quorum-based approach to optimize for contention-free cases

of operation to achieve consensus in only a single round of

communication. However, although these protocols improve

on performance, they degrade very poorly under contention.

Zyzzyva [36] couples BFT with speculative execution to

improve the failure-free operation case. Past work in permis-

sioned BFT systems typically requires at least 3f +1 replicas.

CheapBFT [32] leverages trusted hardware components to

construct a protocol that uses f + 1 replicas.

Other work attempts to introduce new protocols under

redefinitions and relaxations of the BFT model. Large-scale

BFT [50] modifies PBFT to allow for arbitrary choice of num-

ber of replicas and failure threshold, providing a probabilistic

guarantee of liveness for some failure ratio but protecting

safety with high probability. In another form of relaxation.

Zeno [52] introduces a BFT state machine replication protocol

that trades consistency for high availability. More specifically,

Zeno guarantees eventual consistency rather than linearizabil-

ity, meaning that participants can be inconsistent but eventually

agree once the network stabilizes. By providing an even weaker

consistency guarantee, namely fork-join-causal consistency,

Depot [40] describes a protocol that guarantees safety under

2f + 1 replicas.

NOW [28] uses sub-quorums to drive smaller instances of

consensus. The insight of this paper is that small, logarithmic-

sized quorums can be extracted from a potentially large set of

nodes in the network, allowing smaller instances of consensus

protocols to be run in parallel.

Snow White [18] and Ouroboros [34] are some of the ear-

liest provably secure PoS protocols. Ouroboros uses a secure

multiparty coin-flipping protocol to produce randomness for

leader election. The follow-up protocol, Ouroboros Praos [19]

provides safety in the presence of fully adaptive adversaries.

HoneyBadger [42] provides good liveness in a network

with heterogeneous latencies. Tendermint [10], [11] rotates

the leader for each block and has been demonstrated with

as many as 64 nodes. Ripple [51] has low latency by uti-

lizing collectively-trusted sub-networks in a large network.

The Ripple company provides a slow-changing default list of

trusted nodes, which renders the system essentially centralized.

In the synchronous and authenticated setting, the protocol

in [3] achieves constant-3-round commit in expectation, at

the cost of quadratic message complexity. Stellar [41] uses

Federated Byzantine Agreement in which quorum slices enable

heterogeneous trust for different nodes. Safety is guaranteed

when transactions can be transitively connected by trusted

quorum slices. Algorand [27] uses a verifiable random function

to select a committee of nodes that participate in a novel

Byzantine consensus protocol.

Some protocols use a Directed Acyclic Graph (DAG) struc-

ture instead of a linear chain to achieve consensus [5], [8],

[53]–[55]. Instead of choosing the longest chain as in Bitcoin,

GHOST [54] uses a more efficient chain selection rule that

allows transactions not on the main chain to be taken into

consideration, increasing efficiency. SPECTRE [53] uses trans-

actions on the DAG to vote recursively with PoW to achieve

consensus, followed up by PHANTOM [55] that achieves a

linear order among all blocks. Like PHANTOM, Conflux also

finalizes a linear order of transactions by PoW in a DAG

structure, with better resistance to liveness attack [38]. Similar

to Thunderella, Meshcash [8] combines a slow PoW-based

protocol with a fast consensus protocol that allows a high block

rate regardless of network latency, offering fast confirmation

time. Hashgraph [5] is a leader-less protocol that builds a DAG

via randomized gossip. It requires full membership knowledge

at all times, and it is a PBFT-variant that requires quadratic

messages in expectation.

VIII. CONCLUSION

This paper introduced a novel family of consensus protocols,

coupled with the appropriate mathematical tools for analyzing

them. These protocols are highly efficient and robust, com-

bining the best features of classical and Nakamoto consensus.

They scale well, achieve high throughput and quick finality,



work without precise membership knowledge, and degrade

gracefully under catastrophic adversarial attacks.

There is much work to do to improve this line of research.

One such improvement could be the introduction of an adver-

sarial network scheduler. Another improvement would be to

characterize the system’s guarantees under an adversary whose

powers are realistically limited, whereupon performance would

improve even further. Finally, more sophisticated initialization

mechanisms would bear fruitful in improving liveness of multi-

value consensus. Overall, we hope that the protocols and

analysis techniques presented here add to the arsenal of the

distributed system developers and provide a foundation for new

lightweight and scalable mechanisms.
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MOHAMMADI, S. V., SCHRÖDER-PREIKSCHAT, W., AND STENGEL, K.
Cheapbft: resource-efficient byzantine fault tolerance. In Proceedings of

the 7th ACM european conference on Computer Systems (2012), ACM,
pp. 295–308.

[33] KEELING, M. J., AND ROHANI, P. Modeling infectious diseases in

humans and animals. Princeton University Press, 2011.

[34] KIAYIAS, A., RUSSELL, A., DAVID, B., AND OLIYNYKOV, R.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In
Advances in Cryptology - CRYPTO 2017 - 37th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,

Proceedings, Part I (2017), pp. 357–388.

[35] KOKORIS-KOGIAS, E., JOVANOVIC, P., GAILLY, N., KHOFFI, I.,
GASSER, L., AND FORD, B. Enhancing Bitcoin security and perfor-
mance with strong consistency via collective signing. In 25th USENIX

Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-

12, 2016. (2016), pp. 279–296.

[36] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT, A., AND WONG,
E. L. Zyzzyva: Speculative byzantine fault tolerance. ACM Trans.

Comput. Syst. 27, 4 (2009), 7:1–7:39.

[37] LAMPORT, L., SHOSTAK, R. E., AND PEASE, M. C. The byzantine
generals problem. ACM Trans. Program. Lang. Syst. 4, 3 (1982), 382–
401.

https://coinmarketcap.com
https://bitnodes.earn.com/
https://bitnodes.earn.com/
https://www.cia.gov/library/publications/the-world-factbook/geos/da.html
https://www.cia.gov/library/publications/the-world-factbook/geos/da.html
https://eprint.iacr.org/2016/919
https://eprint.iacr.org/2016/919
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption


[38] LI, C., LI, P., XU, W., LONG, F., AND YAO, A. C. Scaling
nakamoto consensus to thousands of transactions per second. CoRR

abs/1805.03870 (2018).

[39] LIGGETT, T. M., ET AL. Stochastic models of interacting systems. The

Annals of Probability 25, 1 (1997), 1–29.

[40] MAHAJAN, P., SETTY, S., LEE, S., CLEMENT, A., ALVISI, L.,
DAHLIN, M., AND WALFISH, M. Depot: Cloud storage with minimal
trust. ACM Transactions on Computer Systems (TOCS) 29, 4 (2011),
12.

[41] MAZIERES, D. The Stellar consensus protocol: A federated model for
internet-level consensus. Stellar Development Foundation (2015).

[42] MILLER, A., XIA, Y., CROMAN, K., SHI, E., AND SONG, D. The
Honey Badger of BFT protocols. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, Vienna,

Austria, October 24-28, 2016 (2016), pp. 31–42.

[43] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system, 2008.

[44] PASS, R., SEEMAN, L., AND SHELAT, A. Analysis of the blockchain
protocol in asynchronous networks. In Advances in Cryptology -

EUROCRYPT 2017 - 36th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Paris, France,

April 30 - May 4, 2017, Proceedings, Part II (2017), pp. 643–673.

[45] PASS, R., AND SHI, E. Fruitchains: A fair blockchain. IACR Cryptology

ePrint Archive 2016 (2016), 916.

[46] PASS, R., AND SHI, E. Thunderella: Blockchains with optimistic instant
confirmation. In Advances in Cryptology - EUROCRYPT 2018 - 37th

Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018

Proceedings, Part II (2018), pp. 3–33.

[47] PEASE, M. C., SHOSTAK, R. E., AND LAMPORT, L. Reaching agree-
ment in the presence of faults. J. ACM 27, 2 (1980), 228–234.

[48] POPOV, S. The tangle. https://www.iota.org/research/academic-papers.
Accessed: 2018-04.

[49] RIVEST, R., AND SHAMIR, A. Payword and micromint: Two simple
micropayment schemes. In Security protocols (1997), Springer, pp. 69–
87.

[50] RODRIGUES, R., KOUZNETSOV, P., AND BHATTACHARJEE, B. Large-
scale byzantine fault tolerance: Safe but not always live. In Proceedings

of the 3rd Workshop on Hot Topics in System Dependability (2007).

[51] SCHWARTZ, D., YOUNGS, N., BRITTO, A., ET AL. The Ripple protocol
consensus algorithm. Ripple Labs Inc White Paper 5 (2014).

[52] SINGH, A., FONSECA, P., KUZNETSOV, P., RODRIGUES, R., AND

MANIATIS, P. Zeno: Eventually consistent byzantine-fault tolerance.
In Proceedings of the 6th USENIX Symposium on Networked Systems

Design and Implementation, NSDI 2009, April 22-24, 2009, Boston, MA,

USA (2009), pp. 169–184.

[53] SOMPOLINSKY, Y., LEWENBERG, Y., AND ZOHAR, A. SPECTRE:
A fast and scalable cryptocurrency protocol. IACR Cryptology ePrint

Archive 2016 (2016), 1159.

[54] SOMPOLINSKY, Y., AND ZOHAR, A. Secure high-rate transaction
processing in Bitcoin. In Financial Cryptography and Data Security,

San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers

(2015), pp. 507–527.

[55] SOMPOLINSKY, Y., AND ZOHAR, A. PHANTOM: A scalable blockdag
protocol. IACR Cryptology ePrint Archive 2018 (2018), 104.

[56] TAN, W. On the absorption probabilities and absorption times of finite
homogeneous birth-death processes. Biometrics (1976), 745–752.

[57] VISHNUMURTHY, V., CHANDRAKUMAR, S., AND SIRER, E. G. Karma:
A secure economic framework for peer-to-peer resource sharing. In
Workshop on Economics of Peer-to-peer Systems (2003), vol. 35.

[58] WONDERNETWORK. Global ping statistics: Ping times between wonder-
network servers. https://wondernetwork.com/pings. Accessed: 2018-04.

APPENDIX A

ANALYSIS

In this appendix, we provide an analysis of Slush, Snowflake

and Snowball.

A. Preliminaries

We assume the network model as discussed in Section II. We

let R (“red”) and B (“blue”) represent two generic conflicting

choices. Without loss of generality, we focus our attention on

counts of B, i.e. the total number of nodes that prefer blue.

a) Hypergeometric Distribution

Each network query of k peers corresponds to a sample

without replacement out of a network of n nodes, also referred

to as a hypergeometric sample. We let the random variable

H(N , x, k) → {0, . . . , k} denote the resulting counts of B in

the sample (unless otherwise stated), where x is the total count

of B in the population. The probability that the query achieves

the required threshold of α or more votes is given by:

P (H(N , x, k) ≥ α) =
k
∑

j=α

(

x

j

)(

n− x

k − j

)

/

(

n

k

)

(2)

For ease of notation, we overload H(∗) by implicitly referring

to P (H(N , x, k) ≥ α) as H(N , x, k, α).

b) Tail Bounds On Hypergeometric Distribution

We can reduce some of the complexity in Equation 2

by introducing a bound on the hypergeometric distribution

induced by HkN ,x. Let p = x/n be the ratio of support for

B in the population. The expectation of H(N , x, k) is exactly

kp. Then, the probability that H(N , x, k) will deviate from

the mean by more than some small constant ψ is given by the

Hoeffding tail bound [29], as follows,

P (H(C, x, k) ≤ (p− ψ)k) ≤ e−kD(p−ψ,p)

≤ e−2(p−ψ)2k
(3)

where D(p − ψ, p) is the Kullback-Leibler divergence, mea-

sured as

D(a, b) = a log
a

b
+ (1− a) log 1− a

1− b (4)

c) Concentration of Sub-Martingales

Let {X{t≥0}} be a sub-martingale and |Xt − Xt−1| < ct
almost surely. Then, for all positive reals ψ and all positive

integers t,

P (Xt ≥ X0 + ψ) ≤ e−ψ2/2
∑

t
i=1

c2t (5)

B. Slush

Slush operates in a non-Byzantine setting; that is, f = 0, c =
n. In this section, we will characterize the irreversibility prop-

erties of Slush (which appear in Snowflake and Snowball), as

well as the precise converge rate distribution. The distribution

of of both safety and liveness of Slush translate well to the

Byzantine setting.

The procedural version of Slush in Figure 4 made use of

a parameter m, the number of rounds that a node executes

Slush queries. What we ultimately want to extract is the total

number of rounds φ that the scheduler will need to execute in

order to guarantee that the entire network is the same color,

whp.

We analyze the system mainly using a continuous time

process. Let {X{t≥0}} be a CTMC. The state space S of

the stochastic process is a condensed version of the full

configuration space, where each state {0, . . . , n} represents the

total number of blue nodes in the system.

Let FXs
be the filtration, or the history pertaining to the

process, up to time s. This process is Markovian and time-

https://www.iota.org/research/academic-papers
https://wondernetwork.com/pings


homogeneous, conforming to

P{Xt = j|FXs
} = P{Xt = j|Xs} = P{Xt = j|X0}

Throughout the paper, we use Q ≡ (qij , i, j ∈ S) notation

to refer to the infinitesimal generator of the process, where

death (i→ i− 1) and birth (i→ i+ 1) rates of configuration

transitions are denoted via µi and λi (λi is distinct from the

clock parameter λ, and will be clear from context). These rates

are
{

µi = i H(N , c− i, k, α), for i→ i− 1

λi = (c− i) H(N , i, k, α), for j → i+ 1

for 1 ≤ i ≤ c − 1, and where i = 0 and i = c are absorbing.

Let pij(t) refer to the probability of transitioning from state i
to j at time t. We always assume that

pij(t) =



















λit+ o(t), for j = i+ 1

µit+ o(t), for j = i− 1

1− (λi + µi)t+ o(t), for j = i

o(t), otherwise

where all o(t) are uniform in i.

a) Irreversibility

In Section IV, we discussed the loose Chvatal bound which

provided intuitive understanding into the strong irreversibility

dynamics of our core subsampling mechanism. In particular,

once the network drifts to some majority value, it tends to

revert back with only an exponentially small probability. We

compute the closed-form expression for reversibility, and show

that it is exponentially small.

Theorem 2. Let ξδ be the probability of absorption into the

all-red state (s0), starting from a drift of δ (i.e. δ drift away

from n/2). Then, assuming δ > 1,

ξδ = 1−

δ
∑

l=1

l−1
∏

i=1

µ2
i

n−l
∏

j=l

λj

2

n/2
∑

l=1

l−1
∏

i=1

µ2
i

n−l
∏

j=l

µj

(6)

and
ξδ − ξδ+1

ξδ+1 − ξδ+2
= ⊓δ+1 =

λδ+1

µδ+1

≈
n− δ − 1

k
∑

j=α

(n− δ − 1)k(δ + 1)k−j

n2k−j

δ + 1

k
∑

j=α

(δ + 1)k(n− δ − 1)k−j

n2k−j

(7)

where from now on we refer to ⊓δ+1 as the drift of the process.

Proof. Our results are derived based on constructions from

Tan [56]. We construct a sub-matrix of Q, denoted B, as

shown in Figure 20. Let W ′1 = (µ1, 0, . . . , 0), W ′n−1 =

(0, . . . , 0, λn−1). Then, we can express Q as

Q =





0 . . . 0
W1 B Wn−1

0 . . . 0





As a reminder, the stationary distribution can be found via

limt→∞ P (t) = eQt, where we have

eQt =
∞
∑

i=0

ti

i!
Qi =

∞
∑

i=0

ti

i!





0 . . . 0
Bi−1W1 Bi Bi−1Wn−1

0 . . . 0





As Tan (eq. 2.3) shows, we have

ξ(t) = B−1

[

∞
∑

i=0

Bi − In−1

]

W1

Since we want the ultimate probabilities, we have that

ξ = lim
t→∞

ξ(t) = −B−1W1

We can explicitly compute ξδ in terms of our rates µi and λi,
getting

ξδ =

n−δ
∑

l=1

n−l
∏

i=1

µi

n−1
∏

j=n−l+1

λj

n
∑

l=1

n−l
∏

i=1

µi

n−1
∏

j=n−l+1

λj

However, we note that ui = λn−i. Algebraic manipulation

from this observation leads to the two equations in the theorem.

This expression is strictly lower than the Chvatal bounds used

in Section IV.

Using the construction for the absorption (and

(ir)reversibility) probabilities as discussed previously, a natural

follow up computation is in regards to mean convergence

time. Let Tz(t) = inf{t ≥ 0 : Xt = {0, n}|X0 = z},
and let τz = E[Tz(t)]. τz is the mean time to reach either

absorbing state, starting from state z, which corresponds to

the mean convergence time. The next theorem characterizes

this distribution.

Theorem 3. Let τz be the expected time to convergence,

starting from state z > n/2, to any of the two converging

states in the network (all-red or all-blue). Then,

τz =

n−1
∑

d=1

x(d)y(d)

2

n/2
∑

l=1

l−1
∏

i=1

µ2
i

n−l
∏

j=l

µj

(8)

where x(d) and y(d) are

x(d) =

min(z,d)
∑

l=1

l−1
∏

i=1

µi

d−1
∏

j=l

λj

y(d) =

n−d−max(z−d,0)
∑

l=1

n−l
∏

i=d+1

µi

n−1
∏

j=n−l+1

λj

(9)

Proof. Following the calculations from before, −B−1 at row

z provides the number of traversals to each other state starting

from z. Calculating their sum, we have our result. The above

equation is the full expression of the matrix row sum.

Theorem 3 leads to the next lemma that captures property

P2, under the assumption that at the beginning of the protocol,

one proposal has at least α support in the network.



B =



























−(λ1 + µ1) λ1 0 · · · · · · 0
µ2 −(λ2 + µ2) λ2 0 · · · 0
0 µ3 −(λ3 + µ3) λ3 · · · 0
...

...
. . .

. . .
. . .

...
...

... µn−3 −(λn−2 + µn−2) λn−3 0
... . . . 0 µn−1 −(λn−2 + µn−2) λn−2
0 . . . 0 0 µn−1 −(λn−1 + µn−1)



























Fig. 20: Matrix B.

Lemma 4. Slush reaches an absorbing state in finite time

almost surely.

Proof. Starting from any non-absorbing, transient state, there

is a non-zero probability of being absorbed. Additionally, since

termination is finite and everywhere differentiable, Theorem 3

also implies that the probability of termination of any network

configuration where a proposal has ≥ α support in bounded

time tmax is strictly positive.

C. Snowflake

In Snowflake, the sampled set of nodes includes Byzantine

nodes. We introduce the decision function D(∗), which is

constructed by having each node also keep track of the total

number of consecutive times it has sampled a majority of

the same color (β). Finally, we introduce a function called

A(St), the adversarial strategy, that takes as parameters the

entire configuration of the network at time t, as well as the

next set of nodes chosen by the scheduler to execute, and as

a side-effect, modifies the set of nodes B to some arbitrary

configuration of colors.

In order for our prior framework to apply to Snowflake, we

must deal with a key subtlety. Unlike in Slush, where it is

clear that once the network has reached one of the converging

states and therefore may not revert back, this no longer applies

to Snowflake, since any adversary f ≥ α has strictly positive

probability of reverting the system, albeit this probability may

be infinitesimally small. The CTMC is flexible enough to deal

with a system where there is only one absorbing state, but

the long-term behavior of the system is no longer meaningful

since, after an infinite amount of time, the system is guaranteed

to revert, violating safety. We could trivially bound the amount

of time, and show safety using this bounded time assumption

by simply characterizing the distribution of etQ, where Q is the

generator. However, we can make the following observation:

if the probability of going from state c (all-blue) to c − 1 is

exponentially small, then it will take the attacker exponential

time (in expectation; note, this is a lower bound, and in reality

it will take much longer) to succeed in reverting the system.

Hence, we can assume that once all correct nodes are the same

color, the attack from the adversary will terminate since it is

impractical to continue an attack. In fact, under reasonably

bounded timeframes, the variational distance between the exact

approach and the approximation is very small. We leave details

to the accompanying paper, but we briefly discuss how analysis

proceeds for Snowflake.

As stated in Section IV, the way to analyze the adversary

using the same construction as in Slush is to condition re-

versibility on the first node u deciding on blue, which can

happen at any state (as specified by D(∗)). At that point, the

adversarial strategy collapses to a single function, which is

to continually vote for red. The probabilities of reversibility,

for all states {1, . . . , c − 1} must encode the probability that

additional blue nodes commit, and the single function of the

adversary. The birth and death rates are transformed as follows:
{

µi = i(1− I[D(∗, i,B)]) H(N , c− i+ f, k, α)

λi = (c− i)(1− I[D(∗, c− i,R)]) H(N , i, k, α)
From here on, the analysis is the same as in Slush. Under

various k and β, we can find the minimal α that provides the

system strong irreversibility properties.

The next lemma captures P3, and the proof follows from

central limit theorem.

Lemma 5. If f < O(
√
n), and α = ⌊k/2⌋+1, then Snowflake

terminates in O(log n) rounds with high probability.

Proof. The results follows from central limit theorem, wherein

for α = ⌊k/2⌋ + 1, the expected bias in the network after

sampling will be O(
√
n). An adversary smaller than this bias

will be unable to keep the network in a fully-bivalent state

for more than a constant number of rounds. The logarithmic

factor remains from the mixing time lower bound.

D. Snowball

We make the following observation: if the confidences

between red and blue are equal, then the adversary has the

same identical leverage in the irreversibility of the system

as in Snowflake, regardless of network configuration. In fact,

Snowflake can be viewed as Snowball but where drifts in

confidences never exceed one. The same analysis applies to

Snowball as in Snowflake, with the additional requirement

of bounding the long-term behavior of the confidences in

the network. To that end, analysis follows using martingale

concentration inequalities, in particular the one introduced in

Equation 5. Snowball can be viewed as a two-urn system,

where each urn is a sub-martingale. The guarantees that can

be extracted hereon are that the confidences of the majority

committed value (in our frame of reference is always blue),

grow always more than those of the minority value, with high

probability, drifting away as t→ tmax.



E. Safe Early Commitment

As we reasoned previously, each conflict set in Avalanche

can be viewed as an instance of Snowball, where each progeny

instance iteratively votes for the entire path of the ancestry.

This feature provides various benefits; however, it also can

lead to some virtuous transactions that depend on a rogue

transaction to suffer the fate of the latter. In particular, rogue

transactions can interject in-between virtuous transactions and

reduce the ability of the virtuous transactions to ever reach

the required ISACCEPTED predicate. As a thought experiment,

suppose that a transaction Ti names a set of parent transactions

that are all decided, as per local view. If Ti is sampled over

a large enough set of successful queries without discovering

any conflicts, then, since by assumption the entire ancestry of

Ti is decided, it must be the case (probabilistically) that we

have achieved irreversibility.

To then statistically measure the assuredness that Ti has

been accepted by a large percentage of correct nodes without

any conflicts, we make use of a one-way birth process, where

a birth occurs when a new correct node discovers the conflict

of Ti. Necessarily, deaths cannot exist in this model, because

a conflicting transaction cannot be unseen once a correct node

discovers it. Our births are as follows:

λi =
c− i
c

(

1−
(

n−i
k

)

(

n
k

)

)

(10)

Solving for the expected time to reach the final birth state pro-

vides a lower bound to the β1 parameter in the ISACCEPTED

fast-decision branch. The table below shows an example of

the analysis for n = 2000, α = 0.8, and various k, where

ε ≪ 10−9, and where β is the minimum required value

before deciding. Overall, a very small number of iterations

k 10 20 30 40

β 10.87625 10.50125 10.37625 10.25125

are sufficient for the safe early commitment predicate. This

supports the choice of β in our evaluation.

F. Churn and View Updates

Any realistic system needs to accommodate the departure

and arrival of nodes. We now demonstrate that Avalanche

nodes can admit a well-characterized amount of churn, by

showing how to pick parameters such that Avalanche nodes

can differ in their view of the network and still safely make

decisions.

Consider a network whose operation is divided into epochs

of length τ , and a view update from epoch t to t + 1 during

which γ nodes join the network and γ̄ nodes depart. Under our

static construction, the state space St of the network had a key

parameter ∆t at time t, induced by ct, f t, nt and the chosen

security parameters. This can, at worst, impact the network

by adding γ nodes of color B, and remove γ̄ nodes of color

R. At time t + 1, nt+1 = nt + γ − γ̄, while f t+1 and ct+1

will be modified by an amount ≤ γ − γ̄, and thus induce a

new ∆t+1 for the chosen security parameters. This new ∆t+1

has to be chosen such that the probability of reversibility from

state ct+1/2+∆t+1−γ is ≤ ε, which ensures that the system

will converge under the previous pessimal assumptions. The

system designer can easily do this by picking an upper bound

on γ, γ̄.

The final step in assuring the correctness of a view change

is to account for a mix of nodes that straddle the τ boundary.

We would like the network to avoid an unsafe state no matter

which nodes are using the old and the new views. The easiest

way to do this is to determine ∆t and ∆t+1 for desired bounds

on γ, γ̄, and then to use the conservative value ∆t+1 during

epoch t. In essence, this ensures that no commitments are

made in configuration St unless they conservatively fulfill the

safety criteria in state space St+1. As a result, there is no

possibility of a node deciding red at time t, the network going

through an epoch change and finding itself to the left of the

new irreversibility state ∆t+1.

This approach trades off some of the feasibility space, to

add the ability to accommodate γ, γ̄ node churn per epoch.

Overall, if τ is in excess of the time required for a decision

(on the order of minutes to hours), and nodes are loosely

synchronized, they can add or drop up to γ, γ̄ nodes in each

epoch using the conservative process described above. We

leave the precise method of entering and exiting the network

by staking and unstaking to a subsequent paper, and instead

rely on a membership oracle that acts as a sequencer and γ-

rate-limiter, using technologies like Fireflies [31].
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