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Abstract

Smart contracts are poised to revolutionize many industries by replacing
the need for both traditional legal agreements and centrally automated digital
agreements. Both performance verification and execution rely on manual actions
from one of the contracting parties, or an automated system that programmat-
ically retrieves and updates relevant changes. Unfortunately, because of their
underlying consensus protocols, the blockchains on which smart contracts run
cannot support native communication with external systems.

Today, the solution to this problem is to introduce a new functionality, called
an oracle, that provides connectivity to the outside world. Existing oracles are
centralized services. Any smart contract using such services has a single point
of failure, making it no more secure than a traditional, centrally run digital
agreement.

In this paper we present ChainLink, a decentralized oracle network. We de-
scribe the on-chain components that ChainLink provides for contracts to gain
external connectivity, and the software powering the nodes of the network. We
present both a simple on-chain contract data aggregation system, and a more
efficient off-chain consensus mechanism. We also describe supporting reputation
and security monitoring services for ChainLink that help users make informed
provider selections and achieve robust service even under aggressively adver-
sarial conditions. Finally, we characterize the properties of an ideal oracle as
guidance for our security strategy, and lay out possible future improvements,
including richly featured oracle programming, data-source infrastructure modi-
fications, and confidential smart-contract execution.
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1 Introduction

Smart contracts are applications that execute on decentralized infrastructure, such
as a blockchain. They are tamperproof, in the sense that no party (even their cre-
ator) can alter their code or interfere with their execution. Historically, contracts
embodied in code have run in a centralized manner that leaves them subject to al-
teration, termination, and even deletion by a privileged party. In contrast, smart
contracts’ execution guarantees, which bind all parties to an agreement as written,
create a new and powerful type of trust relationship that does not rely on trust in
any one party. Because they are self-verifying and self-executing (i.e., tamperproof
as explained above), smart contracts thus offer a superior vehicle for realizing and
administering digital agreements.

The powerful new trust model that smart contracts embody, though, introduces
a new technical challenge: connectivity. The vast majority of interesting[27]1 smart
contract applications rely on data about the real world that comes from key resources,
specifically data feeds and APIs, that are external to the blockchain. Because of
the mechanics of the consensus mechanisms underpinning blockchains, a blockchain
cannot directly fetch such critical data.

We propose a solution to the smart contract connectivity problem in the form of
ChainLink, a secure oracle network. What differentiates ChainLink from other oracle
solutions is its ability to operate as a fully decentralized network. This decentralized
approach limits the trust in any single party, enabling the tamperproof quality valued
in smart contracts to be extended to the end-to-end operation between smart contracts
and the APIs they rely on. Making smart contracts externally aware, meaning capable
of interacting with off-chain resources, is necessary if they are going to replace the
digital agreements in use today.

Today, the lion’s share of traditional contractual agreements that have been digi-
tally automated use external data to prove contractual performance, and require data
outputs to be pushed to external systems. When smart contracts replace these older
contractual mechanisms, they will require high-assurance versions of the same types
of data inputs and outputs. Examples of potential next-generation smart contracts
and their data requirements include:

• Securities smart contracts such as bonds, interest rate derivatives, and many
others will require access to APIs reporting market prices and market reference
data, e.g. interest rates.

1The main use of smart contracts in Ethereum today is management of tokens, which are a
common functionality in most smart contract networks. We believe that the current focus on tokens
to the exclusion of many other possible applications is due to a lack of adequate oracle services, a
situation ChainLink specifically aims to remedy.
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• Insurance smart contracts will need data feeds about IoT data related to the
insurable event in question, e.g.: was the warehouse’s magnetic door locked at
the time of breach, was the company’s firewall online, or did the flight you had
insurance for arrive on time.

• Trade finance smart contracts will need GPS data about shipments, data from
supply chain ERP systems, and customs data about the goods being shipped
in order to confirm fulfillment of contractual obligations.

Another problem common to these examples is the inability for smart contracts
to output data into off-chain systems. Such output often takes the form of a payment
message routed to traditional centralized infrastructure in which users already have
accounts, e.g., for bank payments, PayPal, and other payment networks. ChainLink’s
ability to securely push data to APIs and various legacy systems on behalf of a smart
contract permits the creation of externally-aware tamperproof contracts.

Whitepaper roadmap

In this whitepaper*, we review the ChainLink architecture (Section 2). We then
explain how we define security for oracles (Section 3). We describe the ChainLink
approach to decentralization / distribution of oracles and data sources (Section 4),
and follow with a discussion of the four security services proposed by ChainLink,
as well as the role played by LINK tokens (Section 5). We then describe a proposed
long-term development strategy, which includes better confidentiality protections, the
use of trusted hardware, infrastructure changes, and general oracle programmability
(Section 6). We briefly review alternative oracle designs (Section 7), and conclude
with a short discussion of the design principles and philosophy guiding ChainLink
development (Section 8).

2 Architectural Overview

ChainLink’s core functional objective is to bridge two environments: on-chain and off-
chain. We describe the architecture of each ChainLink component below. ChainLink
will initially be built on Ethereum [16], [35], but we intend for it to support all leading
smart contract networks for both off-chain and cross-chain interactions. In both its
on and off-chain versions, ChainLink has been designed with modularity in mind.
Every piece of the ChainLink system is upgradable, so that different components can
be replaced as better techniques and competing implementations arise.

4



2.1 On-Chain Architecture

As an oracle service, ChainLink nodes return replies to data requests or queries made
by or on behalf of a user contract, which we refer to as requesting contracts and
denote by USER-SC. ChainLink’s on-chain interface to requesting contracts is itself
an on-chain contract that we denote by CHAINLINK-SC.

Behind CHAINLINK-SC, ChainLink has an on-chain component consisting of three
main contracts: a reputation contract, an order-matching contract, and an aggregating
contract. The reputation contract keeps track of oracle-service-provider performance
metrics. The order-matching smart contract takes a proposed service level agreement,
logs the SLA parameters, and collects bids from oracle providers. It then selects bids
using the reputation contract and finalizes the oracle SLA. The aggregating contract
collects the oracle providers’ responses and calculates the final collective result of
the ChainLink query. It also feeds oracle provider metrics back into the reputation
contract. ChainLink contracts are designed in a modular manner, allowing for them
to be configured or replaced by users as needed. The on-chain work flow has three
steps: 1) oracle selection, 2) data reporting, 3) result aggregation.

Oracle Selection An oracle services purchaser specifies requirements that make up
a service level agreement (SLA) proposal. The SLA proposal includes details such as
query parameters and the number of oracles needed by the purchaser. Additionally,
the purchaser specifies the reputation and aggregating contracts to be used for the
rest of the agreement.

Using the reputation maintained on-chain, along with a more robust set of data
gathered from logs of past contracts, purchasers can manually sort, filter, and select
oracles via off-chain listing services. Our intention is for ChainLink to maintain one
such listing service, collecting all ChainLink-related logs and verifying the binaries of
listed oracle contracts. We further detail the listing service and reputation systems
in Section 5. The data used to generate listings will be pulled from the blockchain,
allowing for alternative oracle-listing services to be built. Purchasers will submit
SLA proposals to oracles off-chain, and come to agreement before finalizing the SLA
on-chain.

Manual matching is not possible for all situations. For example, a contract may
need to request oracle services dynamically in response to its load. Automated solu-
tions solve this problem and enhance usability. For these reasons, automated oracle
matching is also being proposed by ChainLink through the use of order-matching
contracts.

Once the purchaser has specified their SLA proposal, instead of contacting the ora-
cles directly, they will submit the SLA to an order-matching contract. The submission
of the proposal to the order-matching contract triggers a log that oracle providers can
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monitor and filter based on their capabilities and service objectives. ChainLink nodes
then choose whether to bid on the proposal or not, with the contract only accepting
bids from nodes that meet the SLA’s requirements. When an oracle service provider
bids on a contract, they commit to it, specifically by attaching the penalty amount
that would be lost due to their misbehavior, as defined in the SLA.

Bids are accepted for the entirety of the bidding window. Once the SLA has
received enough qualified bids and the bidding window has ended, the requested
number of oracles is selected from the pool of bids. Penalty payments that were
offered during the bidding process are returned to oracles who were not selected, and
a finalized SLA record is created. When the finalized SLA is recorded it triggers a
log notifying the selected oracles. The oracles then perform the assignment detailed
by the SLA.

Data Reporting Once the new oracle record has been created, the off-chain oracles
execute the agreement and report back on-chain. For more detail about off-chain
interactions, see Sections 2.2 and 4.

Result Aggregation Once the oracles have revealed their results to the oracle con-
tract, their results will be fed to the aggregating contract. The aggregating contract
tallies the collective results and calculates a weighted answer. The validity of each
oracle response is then reported to the reputation contract. Finally, the weighted
answer is returned to the specified contract function in USER-SC.

Detecting outlying or incorrect values is a problem that is specific to each type
of data feed and application. For instance, detecting and rejecting outlying answers
before averaging may be necessary for numeric data but not boolean. For this reason,
there will not be a specific aggregating contract, but a configurable contract address
which is specified by the purchaser. ChainLink will include a standard set of ag-
gregating contracts, but customized contracts may also be specified, provided they
conform to the standard calculation interface.

2.2 Off-Chain Architecture

Off-chain, ChainLink initially consists of a network of oracle nodes connected to the
Ethereum network, and we intend for it to support all leading smart contract net-
works. These nodes independently harvest responses to off-chain requests. As we
explain below, their individual responses are aggregated via one of several possible
consensus mechanisms into a global response that is returned to a requesting con-
tract USER-SC. The ChainLink nodes are powered by the standard open source core
implementation which handles standard blockchain interactions, scheduling, and con-
necting with common external resources. Node operators may choose to add software
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extensions, known as external adapters, that allow the operators to offer additional
specialized off-chain services. ChainLink nodes have already been deployed along-
side both public blockchains and private networks in enterprise settings; enabling the
nodes to run in a decentralized manner is the motivation for the ChainLink network.

ChainLink Core. The core node software is responsible for interfacing with the
blockchain, scheduling, and balancing work across its various external services. Work
done by ChainLink nodes is formatted as assignments. Each assignment is a set of
smaller job specifcations, known as subtasks, which are processed as a pipeline. Each
subtask has a specific operation it performs, before passing its result onto the next
subtask, and ultimately reaching a final result. ChainLink’s node software comes with
a few subtasks built in, including HTTP requests, JSON parsing, and conversion to
various blockchain formats.

External Adapters. Beyond the built-in subtask types, custom subtasks can be
defined by creating adapters. Adapters are external services with a minimal REST
API. By modeling adapters in a service-oriented manner, programs in any program-
ming language can be easily implemented simply by adding a small intermediate API
in front of the program. Similarly, interacting with complicated multi-step APIs can
be simplified to individual subtasks with parameters.

Subtask Schemas. We anticipate that many adapters will be open sourced, so
that services can be audited and run by various community members. With many
different types of adapters being developed by many different developers, ensuring
compatibility between adapters is essential.

ChainLink currently operates with a schema system based on JSON Schema [36],
to specify what inputs each adapter needs and how they should be formatted. Sim-
ilarly, adapters specify an output schema to describe the format of each subtask’s
output.

3 Oracle Security

In order to explain ChainLink’s security architecture, we must first explain why se-
curity is important—and what it means.

Why must oracles be secure? Returning to our simple examples in Section 1,
if a smart contract security gets a false data feed, it may payout the incorrect party,
if smart contract insurance data feeds can be tampered with by the insured party
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Figure 1: ChainLink workflow: 1) USER-SC makes an on-chain request; 2) CHAINLINK-SC

logs an event for the oracles; 3) ChainLink core picks up the event and routes the assignment
to an adapter; 4) ChainLink adapter performs a request to an external API; 5) ChainLink
adapter processes the response and passes it back to the core; 6) ChainLink core reports
the data to CHAINLINK-SC; 7) CHAINLINK-SC aggregates responses and passes them back
as a single response to USER-SC.

there may be insurance fraud, and if GPS data given to a trade finance contract can
be modified after it leaves the data provider, payment can be released for goods that
haven’t arrived.

More generally, a well-functioning blockchain, with its ledger or bulletin-board
abstraction, offers very strong security properties. Users rely on the blockchain as
a functionality that correctly validates transactions and prevents data from being
altered. They treat it in effect like a trusted third party (a concept we discuss at
length below). A supporting oracle service must offer a level of security commensurate
with that of the blockchain it supports. An oracle too must therefore serve users as
an effective trusted third party, providing correct and timely responses with very
high probability. The security of any system is only as strong as its weakest link,
so a highly trustworthy oracle is required to preserve the trustworthiness of a well-
engineered blockchain.

Defining oracle security: An ideal view. In order to reason about oracle se-
curity, we must first define it. An instructive, principled way to reason about oracle
security stems from the following thought experiment. Imagine that a trusted third
party (TTP)—an ideal entity or functionality that always carries out instructions
faithfully to the letter—were tasked with running an oracle. We’ll denote this oracle
by ORACLE (using all caps in general to denote an entity fully trusted by users), and
suppose that the TTP obtains data from a perfectly trustworthy data source Src.
Given this magical service ORACLE, what instructions would we ask it to carry out?

To achieve the property of integrity, also referred to as the authenticity prop-
erty [24], we would simply ask that ORACLE perform the following steps:
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Figure 2: Behavior of an ideal oracle ORACLE is defined by steps: 1) Accept request; 2)
Obtain data; 3) Return data. Additionally, to protect the confidentiality of a request, upon
decrypting it, ORACLE never uses or reveals the data it contains, except to query Src.

1. Accept request: Ingest from a smart contract USER-SC a request Req = (Src, τ, q)
that specifies a target data source Src, a time or range of times τ , and a query
q;

2. Obtain data: Send query q to Src at time τ ;

3. Return data: On receiving answer a, return a to the smart contract.

These simple instructions, correctly carried out, define a strong, meaningful, but
simple notion of security. Intuitively, they dictate that ORACLE acts as a trustworthy
bridge between Src and USER-SC.2 For example, if Src is https://www.FountOfKnowledge.com,
τ is 4 p.m., and q = “price for ticker INTC”, the integrity of ORACLE guarantees
that it will provide USER-SC with exactly the price of INTC as queried at 4 p.m. at
https://www.FountOfKnowledge.com.

Confidentiality is another desirable property for oracles. As USER-SC sends Req

to ORACLE in the clear on the blockchain, Req is public. There are many situations
in which Req is sensitive and its publication could be harmful. If USER-SC is a
flight insurance contract, for example, and sends ORACLE a query Req regarding a
particular user’s flight (q = “Ether Air Flight 338”), the result would be that a
user’s flight plans are revealed to the whole world. If USER-SC is a contract for

2Of course, many details are omitted here. ORACLE should communicate with both USER-SC

and source Src over secure, i.e., tamperproof, channels. (If Src is a web server, TLS is required. To
communicate with USER-SC, ORACLE must be sure to scrape the right blockchain and digitally sign
A appropriately.)
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financial trading, Req could leak information about a user’s trades and portfolio.
There are many other examples, of course.

To protect the confidentiality of Req, we can require that data in Req be encrypted
under a (public key) belonging to ORACLE. Continuing to leverage the TTP nature
of ORACLE, we could then simply give ORACLE the information-flow constraint:

Upon decrypting Req, never reveal or use data in Req except to query Src.

There are other important oracle properties, such as availability, the last of the
classical CIA (Confidentiality-Integrity-Availability) triad. A truly ideal service OR-

ACLE, of course, would never go down. Availability also encompasses more subtle
properties such as censorship resistance: An honest ORACLE will not single out par-
ticular smart contracts and deny their requests.

The concept of a trusted third party is similar to the notion of an ideal function-
ality [7] used to prove the security of cryptographic protocols in certain models. We
can also model a blockchain in similar terms, conceptualizing it in terms of a TTP
that maintains an ideal bulletin board. Its instructions are to accept transactions,
validate them, serialize them, and maintain them permanently on the bulletin board,
an append-only data structure.

Why the ideal oracle (ORACLE) is hard to achieve. There is, of course, no
perfectly trustworthy data source Src. Data may be benignly or maliciously corrupted
due to faulty web sites, cheating service providers, or honest mistakes.

If Src isn’t trustworthy, then even if ORACLE does operate exactly like a TTP as in-
structed above, it still doesn’t completely meet the notion of security we want. Given a
faulty source Src, the integrity property defined above no longer means that an oracle’s
answer a is correct. If the true price of Intel is $40 and https://www.FountOfKnowledge.com

misreports it as $50, for example, then ORACLE will send the incorrect value a = $50
to USER-SC. This problem is unavoidable when using a single source Src. ORACLE

simply has no way to know whether the answers Src provides to its queries are correct.
A bigger issue, of course, is the fact that our TTP for ORACLE is just an abstrac-

tion. No service provider is unconditionally trustworthy. Even the best-intentioned
may be buggy or hacked. So there is no way to for a user or smart contract to have
absolute assurance that a service ORACLE will carry out its instructions faithfully.

ChainLink reasons about its security protocols in terms of this ideal functionality
ORACLE. Our goal in ChainLink is to achieve a real world system with properties
as close as possible to those of ORACLE under realistic trust assumptions. We now
explain how.

For simplicity in what follows, we now denote by CHAINLINK-SC the complete
set of ChainLink contracts, i.e., its full on-chain functionality (not just its interface
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to requesting contracts). We thereby abstract away the multiple individual contracts
actually used in the system architecture.

4 ChainLink Decentralization Approach

We propose three basic complementary approaches to ensuring against faulty nodes:
(1) Distribution of data sources; (2) Distribution of oracles; and (3) Use of trusted
hardware. We discuss the first two approaches, which involve decentralization, in
this section. We discuss our long-term strategy for trusted hardware, a different and
complementary approach, in Section 6.

4.1 Distributing sources

A simple way to deal with a faulty single source Src is to obtain data from multiple
sources, i.e., distribute the data source. A trustworthy ORACLE can query a collection
of sources Src1, Src2, . . . , Srck, obtain responses a1, a2, . . . , ak, and aggregate them into
a single answer A = agg(a1, a2, . . . , ak). ORACLE might do this in any of a number
of ways. One, for example, is majority voting. If a majority of sources return the
identical value a, the function agg returns a; otherwise it returns an error. In this
case, provided that a majority (> k/2) sources are functioning correctly, ORACLE

will always return a correct value A.
Many alternative functions agg can ensure robustness against erroneous data or

handle fluctuations in data values over time (e.g, stock prices). For example, agg

might discard outliers (e.g., the largest and smallest values ai) and output the mean
of the remaining ones.

Of course, faults may be correlated across data sources in a way that weakens
the assurances provided by aggregation. If site Src1 = EchoEcho.com obtains its data
from Src2 = TheHorsesMouth.com, an error at Src2 will always imply an error at Src1.
More subtle correlations between data sources can also occur. Chainlink also proposes
to pursue research into mapping and reporting the independence of data sources in
an easily digestible way so that oracles and users can avoid undesired correlations.

4.2 Distributing oracles

Just as sources can be distributed, our ideal service ORACLE itself can be approxi-
mated as a distributed system. This is to say that instead of a single monolithic oracle
node O, we can instead have a collection of n different oracle nodes {O1, O2, . . . , On}.
Each oracle Oi contacts its own distinct set of data sources which may or may not
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Figure 3: Requests are distributed across both oracles and data sources. This figure shows
an example of such two-level distribution.

overlap with those of other oracles. Oi aggregates responses from its data sources and
outputs its own distinct answer Ai to a query Req.

Some of these oracles may be faulty. So clearly the set of all oracles’ answers
A1, A2, . . . , An will need to be aggregated in a trustworthy way into a single, author-
itative value A. But given the possibility of faulty oracles, where and how will this
aggregation happen in ChainLink?

Initial solution: In-contract aggregation. Our initial proposed solution in
ChainLink will be a simple one called in-contract aggregation. CHAINLINK-SC—
which, again, denotes the on-chain part of ChainLink—will itself aggregate oracle
responses. (Alternatively, CHAINLINK-SC may call another aggregation contract, but
for conceptual simplicity we assume that the two components form a single contract.)
In other words, CHAINLINK-SC will compute A = Agg(A1, A2, . . . , An) for some func-
tion Agg (similar to agg, as described above), and send the result A to USER-SC.

This approach is practical for small n, and has several distinct benefits:

• Conceptual simplicity: Despite the fact that the oracle is distributed, a single
entity, CHAINLINK-SC, performs aggregation by executing Agg.

• Trustworthiness: As CHAINLINK-SC’s code can be publicly inspected, its correct
behavior can be verified. (CHAINLINK-SC will be a relatively small, simple
piece of code.) Additionally, CHAINLINK-SC’s execution is fully visible on-
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chain. Thus users, i.e., creators of USER-SC, can achieve a high degree of trust
in CHAINLINK-SC.

• Flexibility: CHAINLINK-SC can implement most desired aggregation functions
Agg—the majority function, averaging, etc.

Simple as it is, this approach presents a novel and interesting technical challenge,
namely the problem of freeloading. A cheating oracle Oz can observe the response
Ai of another oracle Oi and copy it. In this way, oracle Oz avoids the expense of
querying data sources, which may charge per-query fees. Freeloading weakens security
by undermining the diversity of data source queries and also disincentivizes oracles
from responding quickly: Responding slowly and freeloading is a cheaper strategy.

We suggest a well known solution to this problem, namely the use of a commit /
reveal scheme. In a first round, oracles send CHAINLINK-SC cryptographic commit-
ments to their responses. After CHAINLINK-SC has received a quorum of responses,
it initiates a second round in which oracles reveal their responses.

Algorithm 1 shows a simple sequential protocol that guarantees availability given
3f + 1 nodes. It uses a commit / reveal scheme to prevent freeloading. Oracle
responses are decommitted, and thus exposed to a potential freeloader only after all
commitments have been made, thereby excluding the freeloader from copying other
oracles’ responses.

On-chain protocols can leverage block times to support synchronous protocol de-
signs. In ChainLink, however, oracle nodes obtain data from sources that may have
highly variable response times, and decommitment times by nodes can vary due to,
e.g., use of different gas prices in Ethereum. To ensure the fastest possible protocol
responsiveness, therefore, Alg. 1 is designed as an asynchronous protocol.

Here, Commitr(A) denotes a commitment of value A with witness r, while SID

denotes the set of valid session ids. The protocol assumes authenticated channels
among all players.

It is easy to see that Alg. 1 will terminate successfully. Given 3f + 1 nodes in
total, at most f are faulty, so at least 2f + 1 will send commitments in Step 4. Of
those commitments, at most f come from faulty nodes, so at least f + 1 come from
honest nodes. All such commitments will eventually be decommitted.

Additionally, it is easy to see that A will be correct in Alg.1. Of the f + 1
decommitments on the single value A, at least one has to come from an honest node.

In-contract aggregation via Alg. 1 will be the main approach supported by Chain-
Link in the short term. The proposed initial implementation will involve a more so-
phisticated, concurrent variant of the algorithm. Our longer-term proposal is reflected
in the rather more complicated protocol OCA (Off-Chain Aggregation) specified in
Algorithms 2 and 3 in Appendix A. OCA is an off-chain aggregation protocol that
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Algorithm 1 InChainAgg({Oi}
n
i=1) (code for CHAINLINK-SC)

1: Wait until Req is received from USER-SC.
2: sid←$ SID

3: Broadcast (request, sid).
4: Wait until set C of 2f +1 messages (commit, ci = Commitri(Ai), sid) from distinct

Oi are received.
5: Broadcast (committed, sid).
6: Wait until set D of f + 1 distinct valid decommitments (decommit, (ri, Ai), sid)

are received where, for some A, all Ai = A.
7: Send (Answer, A, sid) to USER-SC.

minimizes on-chain transaction costs. That protocol also includes payment to oracle
nodes and ensures against payments to freeloaders.

Medium-term strategy: Off-chain aggregation. In-contract aggregation has
a key disadvantage: Cost. It incurs the cost of transmitting and processing on-
chain O(n) oracle messages (commits and reveals for A1, A2, . . . , An). In permissioned
blockchains, this overhead may be acceptable. In permissionless blockchains with on-
chain transaction fees such as Ethereum, if n is large, the costs can be prohibitive. A
more cost-effective approach is to aggregate oracle responses off-chain and transmit a
single message to CHAINLINK-SC A. We propose deployment of this approach, called
off-chain aggregation, in the medium-to-long term.

The problem of achieving a consensus value A in the face of potentially faulty nodes
is much like the problem of consensus that underpins blockchains themselves. Given a
predetermined set of oracles, one might consider using a classical Byzantine Fault Tol-
erant (BFT) consensus algorithm to compute A. Classical BFT protocols, however,
aim to ensure that at the end of a protocol invocation, all honest nodes store the same
value, e.g., in a blockchain, that all nodes store the same fresh block. In our oracle
setting, the goal is slightly different. We want to ensure that CHAINLINK-SC (and
then USER-SC) obtains aggregate answer A = Agg(A1, A2, . . . , An) without partici-
pating in the consensus protocol and without needing to receive answers from multiple
oracles. The problem of freeloading, moreover, still needs to be addressed.

The ChainLink system proposes the use of a simple protocol involving thresh-
old signatures. Such signatures can be realized using any of a number of signature
schemes, but are especially simple to implement using Schnorr signatures [4]. In this
approach, oracles have a collective public key pk and a corresponding private key sk

that is shared among O1, O2, . . . , On in a (t, n)-threshold manner [3]. Such a sharing
means that every node Oi has a distinct private / public keypair (ski, pki). Oi can
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Figure 4: Sigsk[A] can be achieved by any n/2+1 of the oracles.

generate a partial signature σi = Sigski
[Ai] that can be verified with respect to pki.

The key feature of this setup is that partial signatures on the same value A can
be aggregated across any set of t oracles to yield a single valid collective signature
Σ = Sigsk[A] on an answer A. No set of t − 1 oracles, however, can produce a valid
signature on any value. The single signature Σ thus implicitly embodies the partial
signatures of at least t oracles.

Threshold signatures can be realized naïvely by letting Σ consist explicitly of a set
of t valid, independent signatures from individual nodes. Threshold signatures have
similar security properties to this naïve approach. But they provide a significant on-
chain performance improvement: They reduce the size and cost of verifying Σ by a
factor of t.

With this setup, it would seem that oracles can just generate and broadcast partial
signatures until t such partial signatures enable the computation of Σ. Again, though,
the problem of freeloading arises. We must therefore ensure that oracles genuinely
obtain data from their designated sources, rather than cheating and copying Ai from
another oracle. Our solution involves a financial mechanism: An entity PROVIDER

(realizable as a smart contract) rewards only oracles that have sourced original data
for their partial signatures.

In a distributed setting, determining which oracles qualify for payment turns out
to be tricky. Oracles may intercommunicate off-chain and we no longer have a sin-
gle authoritative entity (CHAINLINK-SC) receiving responses and are therefore un-
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able to identify eligible payees directly among participating oracles. Consequently,
PROVIDER must obtain evidence of misbehavior from the oracles themselves, some
of which may be untrustworthy. We propose the use of consensus-like mechanisms
in our solution for ChainLink to ensure that PROVIDER does not pay freeloading
oracles.

The off-chain aggregation system we propose for ChainLink, with accompanying
security proof sketches, may be found in Appendix A. It makes use of a distributed
protocol based on threshold signatures that provides resistance to freeloading by
f < n/3 oracles. We believe resistance to freeloading is an interesting new technical
problem.

5 ChainLink Security Services

Thanks to the protocols we have just described in the previous section, ChainLink
proposes to ensure availability and correctness in the face of up to f faulty oracles.
Additionally, trusted hardware, as discussed in Section 6, is being actively considered
as a secure approach toward protecting against corrupted oracles providing incorrect
responses. Trusted hardware, however, may not provide definitive protection for three
reasons. First, it will not be deployed in initial versions of the ChainLink network.
Second, some users may not trust trusted hardware (see Appendix B for a discussion).
Finally, trusted hardware cannot protect against node downtime, only against node
misbehavior. Users will therefore wish to to ensure that they can choose the most
reliable oracles and minimize the probability of USER-SC relying on > f faulty oracles.

To this end, we propose the use of four key security services: a Validation System,
a Reputation System, a Certification Service, and a Contract-Upgrade Service. All of
these services may initially be run by one company or group interested in launching the
ChainLink network, but are designed to operate strictly accordingly to ChainLink’s
philosophy of decentralized design. ChainLink’s proposed security services cannot
block oracle node participation or alter oracle responses. The first three services only
provide ratings or guidance to users, while the Contract-Upgrade Service is entirely
optional for users. Additionally, these services are designed to support independent
providers, whose participation should be encouraged so that users will eventually have
multiple security services among which to choose.

5.1 Validation System

The ChainLink Validation System monitors on-chain oracle behavior, providing an
objective performance metric that can guide user selection of oracles. It will seek to
monitor oracles for:
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• Availability: The Validation System should record failures by an oracle to re-
spond in a timely way to queries. It will compile ongoing uptime statistics.

• Correctness: The Validation System should record apparent erroneous responses
by an oracle as measured by deviations from responses provided by peers.3

In our initial, on-chain aggregation system in ChainLink, such monitoring is
straightforward, as all oracle activity is visible to CHAINLINK-SC.

Recall, however, that in the off-chain aggregation system envisaged for ChainLink,
it’s the oracles themselves that perform aggregation. Consequently, CHAINLINK-SC

does not have direct visibility into oracle responses and cannot itself monitor avail-
ability and correctness.

Fortunately, oracles digitally sign their responses, and thus, as a side effect, gen-
erate non-repudiable evidence of their answers. Our proposed approach will therefore
be to realize the validation service as a smart contract that would reward oracles
for submitting evidence of deviating responses. In other words, oracles would be
incentivized to report apparently erroneous behavior.

Availability is somewhat trickier to monitor, as oracles of course don’t sign their
failures to respond. Instead, a proposed protocol enhancement would require oracles
to digitally sign attestations to the set of responses they have received from other
oracles. The validation contract would then accept (and again reward) submission of
sets of attestations that demonstrate consistent non-responsiveness by an underper-
forming oracle to its peers.

In both the on-chain and off-chain cases, availability and correctness statistics for
oracles will be visible on-chain. Users / developers will thus be able to view them
in real time through an appropriate front end, such as a Dapp in Ethereum or an
equivalent application for a permissioned blockchain.

5.2 Reputation System

The Reputation System proposed for ChainLink would record and publish user ratings
of oracle providers and nodes, offering a means for users to evaluate oracle performance
holistically. Validator System reports are likely to be a major factor in determining
oracle reputations and placing these reputations on a firm footing of trust. Factors
beyond on-chain history, though, can provide essential information about oracle node

3“Deviation” must be defined in a data-specific manner. For simple boolean responses—for ex-
ample, whether a flight arrived on time—deviation simply means a response opposite that of the
majority. For, say, the temperature of a city, which may vary legitimately across sensors and sources,
deviation may mean significant numerical deviation. Of course, for various reasons, e.g., broken sen-
sors, even a well-functioning oracle may deviate from the majority answer some fraction of the
time.

17



security profiles. These may include users’ familiarity with oracles’ brands, operating
entities, and architectures. We envision the ChainLink Reputation System to include
a basic on-chain component where users’ ratings would be available for other smart
contracts to reference. Additionally, reputation metrics should be easily accessible
off-chain where larger amounts of data can be efficiently processed and more flexibly
weighted.

For a given oracle operator, the Reputation System is initially proposed as sup-
porting the following metrics, both at the granularity of specific assignment types
(see Section 2), and also in general for all types supported by a node:

• Total number of assigned requests: The total number of past requests that an
oracle has agreed to, both fulfilled and unfulfilled.

• Total number of completed requests: The total number of past requests that an
oracle has fulfilled. This can be averaged over number of requests assigned to
calculate completion rate.

• Total number of accepted requests: The total number of requests that have been
deemed acceptable by calculating contracts when compared with peer responses.
This can be averaged over total assigned or total completed requests to get
insight into accuracy rates.

• Average time to respond: While it may be necessary to give oracle responses time
for confirmation, the timeliness of their responses will be helpful in determin-
ing future timeliness. Average response time is calculated based on completed
requests.

• Amount of penalty payments: If penalty payments were locked in to assure
a node operator’s performance, the result would be a financial metric of an
oracle provider’s commitment not to engage in an “exit scam” attack, where the
provider takes users’ money and doesn’t provide services. This metric would
involve both a temporal and a financial dimension.

High-reputation services are strongly incentivized in any market to behave cor-
rectly and ensure high availability and performance. Negative user feedback will pose
a significant risk to brand value, as do the penalties associated with misbehavior.
Consequently, we anticipate a virtuous circle in which well-functioning oracles de-
velop good reputations and good reputations give rise to incentives for continued
high performance.
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5.3 Certification Service

While our Validation and Reputation Systems are intended to address a broad range
of faulty behaviors by oracles and is proposed as a way to ensure system integrity in
the vast majority of cases, ChainLink may also include an additional mechanism called
a Certification Service. Its goal is to prevent and/or remediate rare but catastrophic
events, specifically en bloc cheating in the form of Sybil and mirroring attacks, which
we now explain.

Sybil and mirroring attacks. Both our simple and in-contract aggregation proto-
cols seek to prevent freeloading in the sense of dishonest nodes copying honest nodes’
answers. But neither protects against Sybil attacks [9]. Such attacks involve an ad-
versary that controls multiple, ostensibly independent oracles. This adversary can
attempt to dominate the oracle pool, causing more than f oracles to participate in
the aggregation protocol and provide false data at strategic times, e.g., in order to
influence large transactions in high-value contracts. Quorums of cheating oracles can
also arise not just under the control of a single adversary, but also through collusion
among multiple adversaries. Attacks or faults involving > f oracles are especially
pernicious in that they are undetectable from on-chain behavior alone.

Additionally, to reduce operational costs, a Sybil attacker can adopt a behavior
called mirroring, in which it causes oracles to send individual responses based on data
obtained from a single data-source query. In other words, misbehaving oracles may
share data off-chain but pretend to source data independently. Mirroring benefits an
adversary whether or not it chooses to send false data. It poses a much less serious
security threat than data falsification, but does slightly degrade security in that it
eliminates the error correction resulting from diversified queries against a given source
Src. For example, if https://www.datasource.com emits erroneous data due to, say,
a sporadically triggered bug, multiple queriers may still obtain a correct majority
result.

Sybil attacks resulting in false data, mirroring, and collusion in general may be
eliminated by the use of trusted hardware in our long-term strategy (see Section 6).

Certification Service design. The ChainLink Certification Service would seek to
provide general integrity and availability assurance, detecting and helping prevent
mirroring and colluding oracle quorums in the short-to-medium term. The Certifica-
tion Service would issue endorsements of high-quality oracle providers. We emphasize
again, as noted above, that the service will only rate providers for the benefit of users.
It is not meant to dictate oracle node participation or non-participation in the system.

The Certification Service supports endorsements based on several features of or-
acle deployment and behavior. It would monitor the Validation System statistics
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on oracles and perform post-hoc spot-checking of on-chain answers—particularly for
high-value transactions—comparing them with answers obtained directly from rep-
utable data sources. With sufficient demand for an oracle provider’s data, we expect
there to be enough economic incentive to justify off-chain audits of oracle providers,
confirming compliance with relevant security standards, such as relevant controls in
the Cloud Security Alliance (CSA) Cloud Controls Matrix [26], as well as providing
useful security information that they conduct proper audits of oracles’ source and
bytecode for their smart contracts.

In addition to the reputation metrics, automated on-chain and automated off-
chain systems for fraud detection, the Certification Service is planned as a means
to identify Sybil attacks and other malfeasance that automated on-chain systems
cannot. For example, if all nodes agree that the moon is made of green cheese, they
can cause USER-SC to ingest this false fact. MOON COMPONENTS = {GREEN CHEESE}

will be recorded on the blockchain, however, and visible in a post-hoc review.

5.4 Contract-Upgrade Service

As recent smart contract hacks have shown, coding bulletproof smart contracts is an
extremely challenging exercise [1], [20], [22]. And even if a smart contract has been
correctly programmed, environmental changes or bugs can still result in vulnerabili-
ties, e.g., [2].

For this reason, we propose a Contract-Upgrade Service. We emphasize that use
of this service is entirely optional and in control of users.

In the short term, if vulnerabilities are discovered, the Contract-Upgrade Service
would simply make a new set of supporting oracle contracts available in ChainLink.
Newly created requesting smart contracts will then be able to migrate to the new set
of oracle contracts.

Unfortunately, though, existing ones would be stuck with the old, potentially
vulnerable set. In the longer term, therefore, CHAINLINK-SC would support a flag
(MIGFLAG) in oracle calls from requesting contracts indicating whether or not a call
should be forwarded to a new CHAINLINK-SC should one become available. Set
by default (i.e., if the flag is missing) to false, MIGFLAG would enable requesting
contracts to benefit from automatic forwarding and thus migration to the new version
of CHAINLINK-SC. In order to activate forwarding, a user will cause her requesting
contract to issue ChainLink requests with MIGFLAG = true. (Users can engineer their
smart contracts so that they change this flag upon receiving an instruction to do so
on-chain from an authorized contract administrator.)

Migration of users to new oracle contracts functions as a kind of “escape hatch,”
something long advocated for by blockchain researchers (see, e.g., [23]) as a mechanism
to fix bugs and remediate hacks without resorting to such cumbersome approaches as
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whitehat hacking [1] or hard forks. Migration to the updated contracts will be visible
on the blockchain, and available to audit for users to review before upgrading.

We recognize nonetheless that some users will not feel comfortable with any one
group controlling an escape hatch in the form of migration / forwarding. Forced
migration could empower the migrating contract’s controller, or a hacker who com-
promises relevant credentials, to undertake malicious activity, such as changing oracle
responses. It is for this reason that requesting contracts have full control of the for-
warding feature and can thus opt out of escape-hatch activation. Additionally, in
accordance with ChainLink’s focus on decentralization, we expect that providers will
be able to support multiple versions of CHAINLINK-SC developed by the community.

5.5 LINK token usage

The ChainLink network utilizes the LINK token** to pay ChainLink Node operators
for the retrieval of data from off-chain data feeds, formatting of data into blockchain
readable formats, off-chain computation, and uptime guarantees they provide as op-
erators. In order for a smart contract on networks like Ethereum to use a ChainLink
node, they will need to pay their chosen ChainLink Node Operator using LINK tokens,
with prices being set by the node operator based on demand for the off-chain resource
their ChainLink provides, and the supply of other similar resources. The LINK to-
ken is an ERC20 token, with the additional ERC223 “transfer and call” functionality
of transfer(address,uint256,bytes), allowing tokens to be received and processed by
contracts within a single transaction.

6 Long-Term Technical Strategy

The long-term technical strategy for ChainLink proposed in this whitepaper includes
three key directions: Oracle confidentiality, infrastructure changes, and off-chain com-
putation.

6.1 Confidentiality

A distributed oracle network aims to offer a high degree of protection against faulty
oracles. In most deployment scenarios, it seeks to attain a correct response in the
face of f Byzantine faults (for f < n/2 in our simple aggregation protocol). Trusted
hardware can offer much more and is proposed as a better approach to securing
the ChainLink network. Trusted hardware is the keystone of the Town Crier (TC)
oracle [24], which is currently operating on the Ethereum mainnet [33] and whose
creators partnered with SmartContract in the TC launch.
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Certain forms of trusted hardware, most notably Intel’s recent Software Guard
eXtensions (SGX) set of instruction-set architecture extensions [12]–[15], [18], seek
to provide a powerful adjunct to distributed forms of trust. Briefly, SGX permits an
application to be executed in an environment called an enclave that claims two critical
security properties. First, enclaves protect the integrity of the application, meaning
its data, code, and control flow, against subversion by other processes. Second, an
enclave protects the confidentiality of an application, meaning that its data, code,
and execution state are opaque to other processes. SGX seeks to protect enclaved
applications even against a malicious operating system, and thus against even the
administrator of the host on which an application is running.

While alternative forms of trusted hardware, such as ARM TrustZone, have been
in existence for some time, SGX provides an additional key feature lacking in these
technologies. It enables a platform to generate an attestation to the execution of a
particular application (identified by a build of its hash state). This attestation can
be verified remotely and allows a specific application instance to be bound to a public
key and thus to establish authenticated and confidential channels with other parties.

Running an oracle in an enclave and distributing attestations can provide very
strong assurance that the oracle is executing a particular application, specifically
one created or endorsed by developers in the ChainLink ecosystem. Additionally,
an oracle running in an enclave that can connect to a data source via HTTPS can
provide a strong assurance that the data it retrieves has not been tampered with.
(See [24], [33] for details.) These properties go a long way toward protecting against
oracle misbehavior in the sense of data corruption, Sybil attacks, etc.

A still greater opportunity, however, lies in the ability of trusted hardware to
provide strong confidentiality. The need for confidentiality is in general one of the
main hurdles to blockchain deployment. Confidentiality-preserving oracles can be
instrumental in solving the problem.

Why distributed oracles don’t ensure confidentiality. Confidentiality is fun-
damentally hard to achieve in any oracle system. If an oracle has a blockchain front
end such as a smart contract, then any queries to the oracle will be publicly vis-
ible. Queries can be encrypted on-chain and decrypted by the oracle service, but
then the oracle service itself will see them. Even heavyweight tools such as secure
multiparty computation, which permits computation over encrypted data, can’t solve
this problem given existing infrastructure. (See, e.g.,[11] for an application-oriented
perspective.) At some point a server needs to send a query to a target data source
server. Thus it must see the query, irrespective of whatever confidentiality the query
previously enjoyed. It will also see the response to the query.
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Confidentality-preserving oracles via SGX. An oracle using SGX can ingest
and process data within an enclave, in essence acting like a TTP trusted for integrity
and confidentiality. To begin with, such an oracle can decrypt queries within its
enclave. It can then process them without exposing them to any other process (or
any human being). The enclave can also process data from sources confidentially
and can securely manage sensitive information such as user credentials, a powerful
capability, as we illustrate below.

The Town Crier system supports confidential flight data queries. Flight infor-
mation can be passed to a TC smart contract front end encrypted under the public
key of the TC service. TC decrypts the query and then contacts a data source (e.g.,
flightaware.com) over HTTPS. It returns to the querying smart contract a simple
yes/no answer to the question “Has this flight been delayed?” and exposes no other
information on-chain.

An even more interesting TC capability is its support for trading on the Steam
gaming platform. TC can securely ingest user credentials (passwords) to check that
game ownership has been transferred from a buyer to a seller. It can thereby create
a secure marketplace that would be otherwise unachievable, with high assurance fair
swaps of cryptocurrency for digital goods. (A simple distributed oracle, in contrast,
could not securely manage users’ passwords on their behalf.)

TC can also perform trusted off-chain aggregation of data from multiple sources,
as well as trusted computation over data from multiple sources (e.g., averaging) and
interactive querying of data sources (e.g., searching the database of one source in
response to the answer of another).

Trusted hardware offers an exciting new approach to the scalable usage of blockchains [24],
[29], in which large portions of blockchain infrastructure, including smart contracts,
execute in enclaves. Such an architecture would combine transparency benefits of
blockchains with the confidentiality properties of off-chain execution and trusted
hardware. While similar ideas have been suggested using other techniques, such as
zk-SNARKs [21], trusted hardware is far more practical (and less complicated). Our
current research agenda includes this expansive vision, with oracles as a catalyzing
service.

We briefly discuss the issue of Intel as a root of trust in Appendix B.

Defining security given SGX. It is possible, given the use of trusted hardware,
to define oracle correctness more formally, starting with the formalism for Intel SGX
proposed in [32]. This formalism allows SGX to be treated as a global Universally
Composable (UC) [6] functionality Fsgx(Σsgx)[progencl,R]. Here, and in what follows,
Σ denotes a signature scheme with signing and verification functions Σ.Sign and
Σ.Verify. An instance of Fsgx(Σsgx)[progencl,R] is parameterized by a group signature
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scheme Σsgx. Argument progencl denotes the program running in an enclave, i.e.,
environment protected by the hardware. R denotes the untrusted code running on
an SGX host, i.e., the software that calls the application running in the enclave.

Figure 5 (taken from [24]) shows the operation of the functionality Fsgx. Upon ini-
tialization, it runs outp := progencl.Initialize(), generating and attestation to the code
of progencl and outp. An attestation σatt is a digitally signed statement by the platform
that progencl is running in an enclave and has yielded output outp. In typical usage,
progencl.Initalize() outputs an instance-specific public key that can be used to create
a secure channel to the application instance. Upon a resume call with (id, params),
Fsgx continues execution and outputs the result of progencl.Resume(id, params), where
id denotes a session identifier and params denotes parameters input to progencl.

Fsgx[progencl,R]: abstraction for SGX

Hardcoded: sksgx (private key for Σsgx)

Assume: progencl has entry points Initialize and Resume

Initialize:
On receive (init) from R:

Let outp := progencl.Initalize()
σatt := Σsgx.Sign(sksgx, (progencl, outp))
Output (outp, σatt)

Resume:
On receive (resume, id, params) from R:

Let outp := progencl.Resume(id, params)
Output outp

Figure 5: Formal abstraction for SGX execution capturing a subset of SGX features..

Given the formalism of Figure 5, it is possible to precisely define the integrity of
an oracle. Definition 1 does so in a slight generalization of the definition given in [24]
that we call Authenticity of Oracle.

Definition 1 (Authenticity of Oracle). We say that an oracle O running program
progencl using Fsgx and outputting instance key pkO satisfies Authenticity of Oracle if,
for any polynomial-time adversary A that can interact arbitrarily with Fsgx, A cannot
cause an honest verifier to accept (pkO , σatt, params := (url, , T ), data, σ) where data is
not the contents of url with the public key at time T (progencl.Resume(id, params) in
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our model). More formally, for any probabilistic polynomial-time adversary A,

Pr









(pkO , σatt, id, params, data, σ)← AFsgx(1λ) :
(

Σsgx.Verify(pksgx, σatt, (progencl, pkO)) = 1
)

∧
(

Σ.Verify(pkO , σ, (id, params, data)) = 1
)

∧
data 6= progencl.Resume(id, params)









≤ negl(λ),

for security parameter λ.

6.2 Infrastructure changes

Many of the challenges in constructing secure oracles arise from the fact that existing
data sources don’t digitally sign the data they serve. If they did, then oracles would
not need to be trusted to refrain from tampering with data. HTTPS, the protocol for
secure web communications, does not enable data signing. It does, though, have an
underlying public-key infrastructure (PKI) that requires servers to possess certificates
that could in principle support data signing.

This observation is the basis of TLS-N, a TLS extension, that allows HTTPS
servers to sign portions of their sessions with clients. The selective nature of the
signing provides other nice features, such as the ability for clients to exclude from
signed transcripts and thus protect the confidentiality of credentials (e.g., passwords)
they use to connect to servers.

We believe infrastructure changes such as TLS-N are promising approaches to
supporting oracle security. They will probably need to be used in concert with other
technologies such as SGX, however, because of the following limitations:

1. Infrastructure modifications: Unfortunately, until and unless TLS-N becomes a
standard, data sources must expressly deploy it for clients to benefit. Few data
sources are likely to in the near future.

2. Aggregation and computation: TLS-N cannot support aggregation or other
forms of trusted computation over data from data sources, so some trusted
mechanism will still be required to accomplish these tasks.

3. Cost: Verification of TLS-N-signed data incurs relatively high on-chain costs
compared with simple signature verification.

4. Confidentiality: TLS-N cannot support out-of-band confidential management
of user credentials or queries, but instead requires users to query a data source
themselves for this purpose. For example, confidential flight information cannot
be stored in a smart contract for later confidential automated query of a website.
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6.3 Off-chain computation

Some intriguing uses of oracles, such as the use of credential-dependent APIs, require
that an oracle do considerably more than just transmit data. It may need to manage
credentials, log into accounts to scrape data, and so forth. Indeed, given truly trust-
worthy and confidential oracles, something that SGX-backed systems à la Town Crier
and techniques such as zero-knowledge proofs [21] can help achieve, the boundary
between oracles and smart contracts may become fluid.

ChainLink already supports a regex-based language for queries that enables users
to flexibly specify the processing of off-chain data. Our long-term strategy, however,
seeks to create a world where oracles are a key off-chain computation resource used
by most smart contracts. We believe this will be enabled by building towards a
model of fully general, private off-chain computation within oracles whose results
are consumed by smart contracts. If this can be achieved with strong security, as we
believe it can, pushing costly and sensitive computation logic into oracles will result in
better confidentiality, lower contract execution costs, and more flexible architectures.

7 Existing Oracle Solutions

ChainLink is designed to fill a pervasive need for new oracle technology in smart
contract systems. Unfortunately today there is a very limited supply of highly secure
and flexible oracle systems. We believe this lack of trustworthy oracles is a major
impediment to the evolution of smart contracts.

The most commonly used option for oracle services today are centralized oracle
providers. This approach is problematic as it creates a centralized point of control,
and thus does not meet the high standards of tamper resistance that trustless smart
contracts require. Some such systems, e.g. [31], attempt to remedy this problem by
relying on notarization, to “prove” correct behavior. This use of notarization services
is worrisome in view of documented problems with these services [37], and the fact
that their attestations cannot be feasibly verified on-chain, resulting in a (potentially
recursive) need for further verification.

Another approach to delivering trustworthy oracle data is to rely on manual human
input of unstructured data. These “manual-input oracle” are commonly proposed for
use in prediction-markets [17], [25], [28]. By creating appropriate financial stakes and
assuming economically rational players with limited financial incentives for cheating,
such oracles provide a high assurance of correct crowd-sourced answers. This approach
is decentralized and flexible. Since manual-input oracles obtain their responses from
human beings, they can respond to questions for which structured data is hard to
find, or difficult to extract in a reliable way, e.g., requires natural language processing
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of news events. Unfortunately, though, because human cognition is costly and slow,
manual-input oracles are resource-intensive, not real-time, and can handle only a
limited set of questions at any given time. We believe that ChainLink could also be
very useful for quickly and automatically resolving prediction-market contracts that
can be resolved by structured data.

A final approach is to change the form of data at the source. If a data source digi-
tally signed the data it provided, then the relaying server wouldn’t need to be trusted.
USER-SC could simply check the signatures on data it receives. An excellent, general
approach of this kind is provided by TLS-N, as discussed above. Unfortunately, as
already mentioned, TLS-N requires changes to existing infrastructure.

8 Conclusion

We have introduced ChainLink, a decentralized oracle network for smart contracts
to securely interact with resources external to the blockchain. We have outlined the
ChainLink architecture, describing both on and off-chain components. After defining
security in the context of oracles, we described ChainLink’s multilayered approach to
decentralization. We proposed a novel protocol with new features such as protection
against freeloading (with additional protocols and security-proof sketches in the paper
appendix). We also laid out a roadmap for how ChainLink can harness technological
and infrastructural advances, such as trusted hardware and digital signing of data by
sources. Finally, having examined existing oracle solutions and their shortcomings,
we have exposed the need today for a system such as ChainLink.

Design Principles. As we continue our work on ChainLink, we will seek to prior-
itize the following core values:

• Decentralization for secure and open systems. Decentralization is not only the
foundation of the tamperproof properties of blockchains, but the basis of their
permissionless nature. By continuing to build decentralized systems, we aim
to further enable permissionless development within the ecosystem. We believe
that decentralization is a crucial component for a globally thriving ecosystem
with long-term sustainability.

• Modularity for simple, flexible system design. We appreciate the philosophy of
building small tools which do one thing well. Simple components can be easily
reasoned about and thus securely combined into larger systems. We believe
that modularity not only enables upgradable systems, but facilitates decentral-
ization. Wherever key pieces of ChainLink depend on or are managed by too
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few parties, we will seek to design an ecosystem which allows for competing
implementations to be used.

• Open source for secure, extensible systems. ChainLink is made possible by
standing on the shoulders of many open source projects. We value the commu-
nity and will continue to contribute by developing ChainLink in an open source
manner. We plan to engage continually with developers, academics, and secu-
rity experts for peer review. We encourage testing, audits, and formal proofs of
security, all with the aim of creating a platform whose robustness and security
can support future innovations.

With these principles in mind, we look forward to extending the reach and impact
of blockchains and smart contracts by making oracles a secure cornerstone of the
ecosystem.
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A Off-Chain Aggregation

To ensure both valid, signed answers and to prevent freeloading, our off-chain aggre-
gation protocol, discussed in Section 4.2, will rely on a simple distributed protocol
based on threshold signatures [8]. The benefit of this approach is that for a given
query, a single signature can be generated off-chain by a collection of n oracle nodes.
As a result, only a single authenticated message needs to be handled on-chain, instead
of O(n) messages from distinct oracle nodes. This approach greatly reduces costs by
comparison with those incurred by Algorithm 1. The idea can be further extended,
as in [30], to aggregate the answers to multiple queries within a single threshold
signature, an idea we don’t explore here but may consider in our architecture.

Suppose that f < n/3 oracles are faulty and t = f + 1. Faulty nodes may try
to perform freeloading and/or any of a range of other dishonest behaviors, such as
signing invalid answers.

Our complete protocol for off-chain aggregation consists of a pair of algorithms
OCA = (DistOracle,RewardOracles) for computing a signature Sigsk[A] on value A =
Agg(A1, A2, . . . , An), for the majority function Agg. A simplified, single-round version
of these protocols is shown respectively in Algorithms 2 and 3. The first is executed
by the participating oracles, while the second is executed by an entity PROVIDER

that may, as mentioned above, take the form of a smart contract.
Before presenting OCA, we give some basic background on Schnorr signatures and

the threshold scheme for computing them given in [8].

Schnorr signatures. The Schnorr signature scheme makes use of a group G of
prime order p with generator g for which the discrete log problem is presumed to
be hard. A user’s key pair takes the form (sk, pk) = (x, y = gx) for x←$Z

×

p , where
Z

×

p = Zp−0. Without loss of generality, we denote group operations multiplicatively.
Schnorr signatures may be computed over elliptic curve groups, and indeed typically
are in modern crypto implementations. Figure 6 shows the Schnorr signature scheme.

Threshold Schnorr signature scheme. We make use of the threshold signature
scheme of [8]. This scheme generates a global private / public keypair (sk, pk). It
enables threshold generation of a full signature Sigsk[m] for a desired message m.

In the initial key generation protocol, each player is assigned a key share xi = ski.
This setup is a one-time operation and can be done using a distributed key generation
protocol, e.g., [5] or, for an asynchronous setting, [10].

To generate a signature, players (oracles in our setting) first perform a distributed
key generation protocol, as for key-share generation at setup. The output of this
protocol is a global ephemeral secret key e. Each player (Oi) receives a (secret) share
ei of e.
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Schnorr signature: Signer input (m, sk = x); Verifier input pk = y

Signer Verifier

r←$Z
x
p

e← gr

c = H(m || e)

s = cx+ e

(e,s),m
−−−−→

c = H(m || e)

gs
?
= ryc

Figure 6: Schnorr signature scheme.

A partial signature of Oi given ephemeral key e takes the form σ
(e)
i = cxi + ei,

where c = H(m || e), as in the full signature. For each player Oi there also exists
a function validi(σi; (pk, e)) that verifies its partial signature. We refer to a partial
signature as valid for Oi if it verifies correctly under validi.

We have somewhat modified notation and greatly condensed the scheme for our
exposition here. We refer the reader to [8] for details.

A.1 OCA protocol

We now present the DistOracle and RewardOracles algorithms that compose OCA.
These are specified below in Algorithms 2 and 3. Using condensed notation (rather
than including witnesses explicitly, as in Algorithm 1) we let Commit denote a com-
mitment function.

Note that all players can see the messages received by CHAINLINK-SC, as it is on-
chain. Let Σ∗ be the first valid signature Σ sent to CHAINLINK-SC. In Alg. 3, we let
PS∗ denote a set of decommitments received by PROVIDER whose partial signatures
yield Σ∗. (PS∗ could come from the oracle that sent Σ∗, but need not. Any oracle
with a partial signature in PS∗ is incentivized to send PS∗.)
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Algorithm 2 DistOracle(f, n, i, ski = xi, pk, Src) (code for Oi)

Jointly generate ephemeral key:

1: Execute distributed key-generation protocol and receive (ei, e).

Obtain data:

2: Obtain Ai from Src.

Generate partial signature:

3: Compute σ
(e)
i (= cxi + ei, for c = H(m || e), where m = Ai).

Commit round:

4: Broadcast commitment commi =
(

Commit(σ
(e)
i , Ai); i

)

.
5: Wait until a set Ci of n− f valid commitments from distinct oracles is received.
6: Send Ci to PROVIDER.

Prepare round:

7: Broadcast prepared.
8: Wait until n− f distinct prepared messages are received.

Reveal / decommit round:

9: Broadcast decommitment of (σ
(e)
i , Ai) for commi.

10: Wait until a set PS of ≥ t valid decommitments are received.

Full signature computation:

11: if no valid Σ has yet been received by CHAINLINK-SC then
12: Aggregate partial signatures in PS into Σ = Sigsk[A].
13: Send Σ to CHAINLINK-SC.
14: Send PS to PROVIDER.
15: end if
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Algorithm 3 RewardOracles (code for PROVIDER)

1: Wait until set C of n− f commitment sets (Ci) from distinct oracles and PS∗ are
received.

2: for every oracle Oj do
3: if σj ∈ PS∗ and > 2f sets in C include commitments to σj from Oj then
4: Send $reward to Oj.
5: end if
6: end for

A.2 Proof sketches

We offer proof sketches of the key properties of OCA. We show that assuming at most
f faulty nodes, the protocol always generates a valid signature on a correct answer,
and never rewards freeloading oracle nodes.

Claim 2. The protocol OCA will never reward a freeloading node.

Proof. (Sketch) Suppose that Oz is freeloading. Then it can broadcast a valid com-
mitment only after time τ , the time at which the first honest Oi decommits in Step
9 of Alg. 2. Oi has received n− f prepared messages of which at least n− 2f come
from honest nodes. Let Oj denote one of these at least n − 2f honest nodes. Oj

will no longer accept commitments after sending a prepared message, so the set Cj

of any such honest node Oj will no longer change after time τ , and thus Cj will ex-
clude a commitment with a correct partial signature σz from Oz. Therefore, at most
n − (n − 2f) = 2f sets in C in Alg. 3 will include Oz. Thus Oz will not receive a
reward.

Unfortunately, OCA cannot ensure that non-freeloading nodes are paid. A cheat-
ing adversary can, after receiving a decommitment, rush honest nodes in Step 13 of
Alg. 2 by generating its own partial signatures and including only one honest node’s
partial signature in the generation of Σ. That honest node’s commitment may not
have been included among the n − f collected by any node. It could have come
afterward.

Claim 3. OCA will always result in a valid signature Σ = Sigsk[A] eventually being
sent to CHAINLINK-SC.

Proof. (Sketch) There are n−f honest nodes, and f < n/3, so there are > 2f ≥ f+1
honest nodes, and thus at least t honest nodes. So Step 1 of Alg. 2 will complete
successfully.

Similarly, since there are n−f honest nodes, every oracle will eventually complete
Step 7 of Alg. 2, sending a prepared message. Honest nodes will eventually then
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receive at least n − f prepared messages and will decommit, permitting Step 13 to
be completed by some honest node.

Claim 4. Any valid signature Sigsk[A] received by CHAINLINK-SC in oca will be on a
valid value A.

Proof. (Sketch) It is easy to see that a valid signature Sigsk[A] includes a correct value
A. As t partial signatures are needed to compute Sigsk[A], and at most f < t nodes
are faulty, at least one partial signature on A was provided by an honest node and
thus it must be correct.

A.3 Discussion

OCA introduces a few design challenges that we briefly discuss here.

Payment for honest nodes. Unfortunately, while it penalizes freeloaders with
non-payment, OCA is not able to guarantee conversely that honest nodes are paid.
Indeed, even in the benign case where no nodes are faulty, unlucky message ordering
can result in honest nodes that have contributed partial signatures to Σ not receiving
payment.

This problem could be addressed in part by making Alg. 2 synchronous. Specifi-
cally, “Wait” steps could require that nodes wait a period of time ∆ such that receipt
of messages from honest nodes is guaranteed. In this case, all nodes with partial
signatures incorporated into Σ would be guaranteed payment. Side effects, however,
would be slower execution and the challenge of setting ∆ correctly.

The problem of designing an asynchronous protocol with strong payment guaran-
tees is an open research problem that we are currently exploring.

Redundant messages. OCA aims to minimize on-chain communication and ide-
ally involves just one on-chain message, namely a signed response Σ, from the set of
participating oracles. In practice, however, because a signature Σ will not post imme-
diately to the blockchain, multiple oracles could independently send signed responses
to the blockchain. The best way to limit such redundant messages is for oracles to
monitor not just the blockchain, but the mempool, i.e., pending messages.

Key management. Of course, as is often the case, key management is a major
challenge in protocols of this kind. The distribution of shares of sk can be performed
in a distributed manner [5] and updates can be made to accommodate new nodes
and remove departing nodes, as well as to provide proactive security, i.e., ongoing
resilience against compromise of nodes’ keys. Additionally, nodes can be organized
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into distinct cliques to bound the size of n. We propose that ChainLink employ these
techniques to ensure a flexible, responsive, and secure distributed oracle.

B SGX Trust Assumptions

In Intel’s role of providing stronger assurance of correctness, SGX enhances but does
not supplant other integrity protections in ChainLink. In other words, use of SGX
makes the system strictly stronger.

Trusting SGX for confidentiality does require trust in Intel, but this trust is cir-
cumscribed. Assuming that Intel does not have a backdoor in its CPUs enabling
leakage of enclave data, it does not have a means of inspecting enclave state. (Such
a backdoor is possible, but which would require the presence of physical evidence on
every user’s machine and pose a serious reputational risk.)

Intel or an adversary that corrupts Intel’s manufacturing processes could in prin-
ciple falsify attestation keys (platform EPID keys). Such an adversary could generate
EPID keys that are not embedded in SGX-enabled servers, but instead permit attes-
tations to be generated in a non-SGX platform. In effect, this adversary could create
bogus servers that generate valid-looking SGX attestations, but provide no protec-
tions for enclaved code. Should there be more than f such nodes, of course, the
adversary could corrupt oracle responses. More problematically, such nodes would
expose sensitive data handled by oracle nodes to the adversary. The ability to fal-
sify EPID keys, however, does not imply an ability to corrupt existing, valid SGX
instances.

It is also important to recognize that of course today, whether or not we like it,
trust in Intel is inescapable. The CPU in the machine on which you are reading this
paper bears witness to this fact—or, if not, the CPU in the server from which you
downloaded this paper.

Of course, it would be preferable to make use of trusted hardware from multiple
vendors, and it is to be hoped that others will create equivalent capabilities. New,
open architectures for trusted hardware, and ways to weaken the trust assumptions
required of such hardware, are active areas of research, e.g., [19], [34]. The ability to
diversify across vendors or architectures per se would not ensure data confidentiality,
however.

We are also interested in research into techniques for confidentiality assurance in
distributed networks through the use of cover traffic.
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